

SAREP Agrivoltaics Knowledge Series: Agrivoltaics Groundwork

Jordan Macknick

July 30, 2024

Learn More: Session 2

Agrivoltaics 101 July 23

Basics, history, and potential benefits

Agrivoltaics Groundwork July 30

Collaboration and partnerships for success

Agrivoltaics Pathway August 6

Steps and processes to develop a project

Kate Doubleday

Model Engineer and Agrivoltaics Researcher

Jordan Macknick

Agrivoltaics Principal Investigator and Lead Energy-Water-Land Analyst

Brittany Staie

Agrivoltaics and Food-Water-Energy Nexus Researcher

Brian Mirletz

Energy Analyst and Software Engineer

Agenda

- The importance of collaboration and capacity building for agrivoltaics
- Opportunities for agrivoltaics in the South Asian context
- Agrivoltaics Groundwork

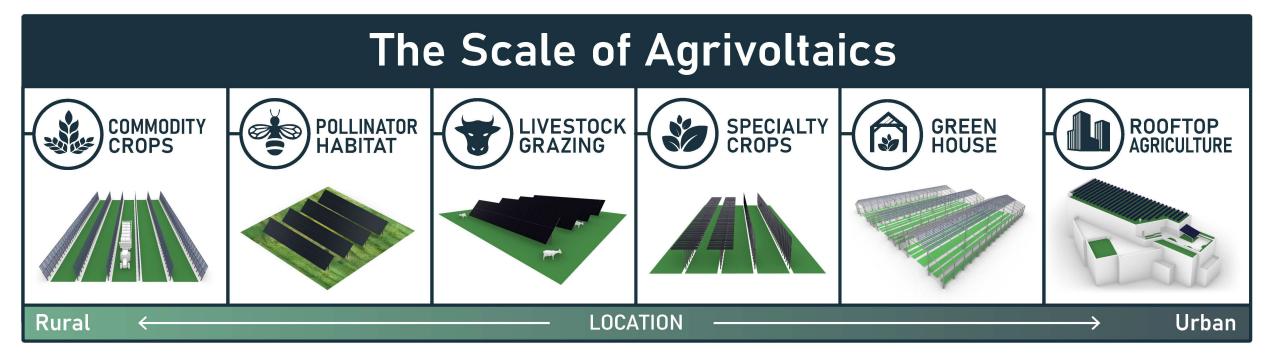
The Importance of Collaboration and Community in Successful Agrivoltaics Projects

Agrivoltaics Definitions

Grazing

Sheep, cows, or other grazing animals foraging underneath and/or in between solar panels.

Crop Production


Agricultural production under or in between rows of solar panels.

Greenhouse

Solar technologies placed on top of or integrated with greenhouses.

Habitat

Pollinator habitat, native grasses and vegetation, and naturalized beneficial vegetation.

PV SCALE & SYSTEM TYPE						
Vertical Bifacial	Fixed Tilt	Fixed Tilt	Single Axis Tracking	Building Integrated PV	Fixed Tilt & Pergola	
Utility						

Credit: Tom Hickey

Agrivoltaics has applications across rural and urban settings

The 5 C's of Agrivoltaic Success

Macknick, Jordan, Hartmann, Heidi, Barron-Gafford, Greg, Beatty, Brenda, Burton, Robin, Seok-Choi, Chong, Davis, Matthew, Davis, Rob, Figueroa, Jorge, Garrett, Amy, Hain, Lexie, Herbert, Stephen, Janski, Jake, Kinzer, Austin, Knapp, Alan, Lehan, Michael, Losey, John, Marley, Jake, MacDonald, James, McCall, James, Nebert, Lucas, Ravi, Sujith, Schmidt, Jason, Staie, Brittany, & Walston, Leroy. The 5 Cs of Agrivoltaic Success Factors in the United States: Lessons from the InSPIRE Research Study. NREL/TP-6A20-83566. <u>https://doi.org/10.2172/1882930</u>

5 C's of Agrivoltaic Success

Credit: Tom Hickey

Collaboration and Partnerships are Critical for Success

- Long-term agreements
- Balancing multiple, competing objectives
- Clearly defined roles and responsibilities
- Ongoing and regular communication
- Data sharing
- Incorporating stakeholder perspectives

Photo by Werner Slocum, NREL

Security: Are all partners receiving benefits they desire while minimizing risks? Consider:

- Solar industry equipment damage
- Solar industry O&M activities
- Agricultural equipment damage
- Agricultural timing
- Agricultural flexibility
- Roles and responsibilities
- Long-term certainty
- Cross-training
- Risk mitigation

Key Considerations for Planning and Deployment

Compatibility: Are the solar, agricultural, and partnership plans all compatible?

Photo by Jordan Macknick, NREL

Consider:

- Farm equipment
- Solar infrastructure
- Farmer, grazer, and/or herder practices
- Sitewide Operations & Maintenance plans
- Yield, cost, and revenue impacts
- Farmer engagement in site design
- Flexibility of system to adapt to changing agricultural needs

Potential Benefits Across Stakeholders

Pascaris et al., 2020; 2021; 2022; 2023

Photos by Werner Slocum, Dennis Schroeder, Jordan Macknick, NREL

Farmer Benefits

Enhanced farm viability (economic and climate resilience)

Revenue diversification

Maximized land use, innovative dual-uses

Water and energy savings (regionspecific)

Community Benefits

Economic and workforce development

Reduced pressure on farmland

Protect cultural heritage and local interest

Local food-energy resilience through distributed resources

Industry Benefits

Improved community acceptance and company reputation

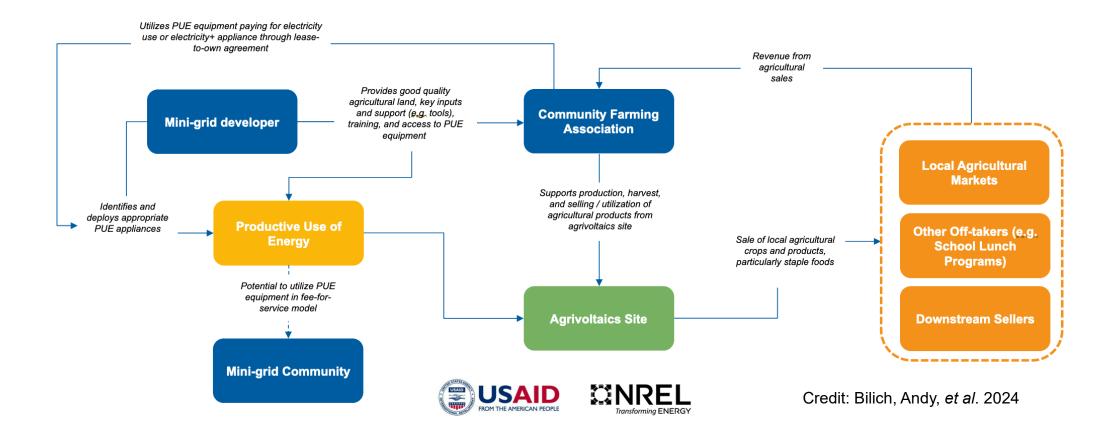
Savings on O&M (site-specific)

Increased land access

Maximized system co-benefits

...and Concerns

Photos by Werner Slocum, Dennis Schroeder, Jordan Macknick, NREL


Pascaris et al., 2020; 2021; 2022; 2023

Farmer Concerns	Community Concerns	Industry Concerns
Impacts on soil, crop/forage productivity, land access, farmland preservation	Impacts on cultural heritage and landscapes	The "liability of newness" (technical, economic, and political unknowns)
Operational challenges with infrastructure	Land type, aesthetic	Cost-benefit analysis uncertainties
Long-term planning, decommissioning	Distributional justice	Political feasibility

Multiple Potential Business and Partnership Models

- Farmer-owned projects
- Long-term (25-30 year) land leases
 - Solar owner/operator \leftrightarrow landowner
 - Landowner/solar owner \leftrightarrow tenant farmer

- Grazing operations and maintenance (O&M) contracts
 - Landowner/solar owner \leftrightarrow grazier
- Community association partnerships
 - Landowner/solar owner ↔ community farming association

Aligning with Local Processes: Are all relevant rules being followed?

Consider:

- Energy infrastructure requirements
- Agricultural qualifications
- Regulations at multiple jurisdictional levels (national to local)
- Policies and incentives across sectors
- Changes in land-use status

Recommendations

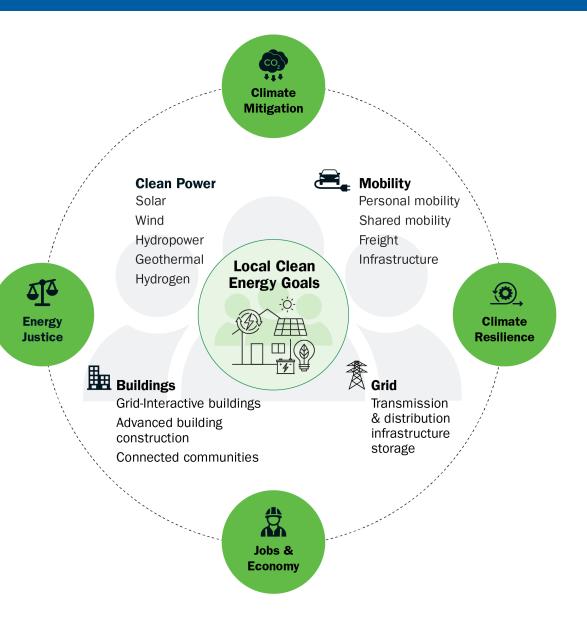
- Initiate conversations and partnership conversations as soon as possible
- Long-term agreements with specific roles outlined, with room for flexibility
- Standardized base contract terms and examples
- Clear policy, permitting, and regulatory frameworks across sectors and jurisdictions

Agrivoltaics Groundwork

Agrivoltaics Groundwork

What are key elements to consider before building and designing an agrivoltaics project?

What activities can continue after an agrivoltaics project is built?


Clean Energy to Communities (C2C) Program

C2C provides communities with expertise and tools to achieve their **clean energy goals** through in-depth partnerships, peer-learning cohorts, and expert match.

C2C Expert Match Participants:

- Local governments
- Tribes
- Community-based/nonprofit organizations
- Universities, colleges, and community colleges

C2C Agrivoltaics Technical Assistance at NREL

Knowledge Transfer

Provides resources for capacity building and project development:

- Agrivoltaics 101 Resources
- Data Access
- Online Tools

Educational and Stakeholder Outreach

Transfers knowledge to audience for action:

- Training
- Webinars
- Expert Support
- **Guest Lectures**

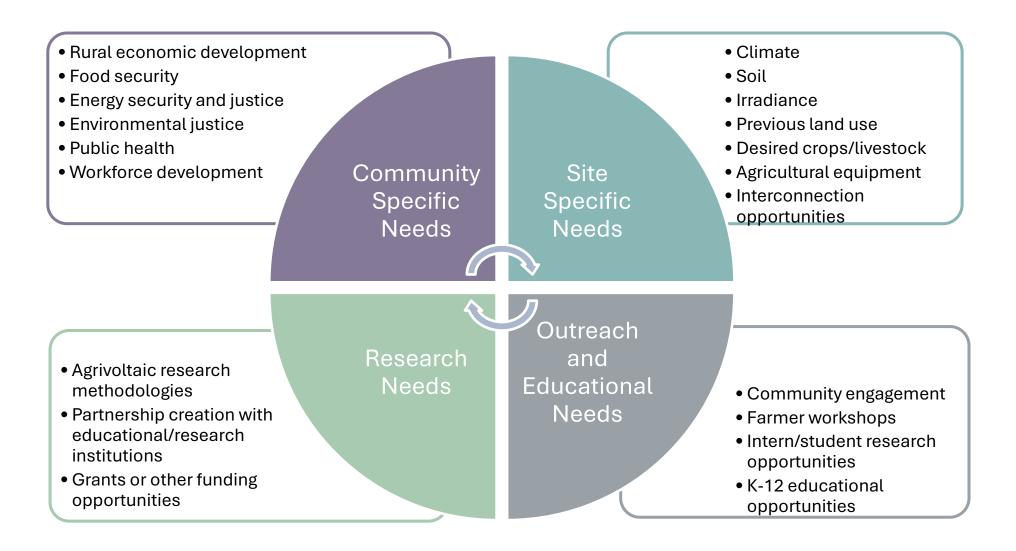
Modeling and Analysis

Applies knowledge, interprets data to support community action:

- Analysis & Modeling
- System Design
- Site Visits

Demonstration Facilities and Research

Assist with on-site research development and partnerships:


- Research Methodologies and Questions
- Partnership Development
- Curriculum Development
 Support

Photos by Werner Slocum, NREL

C2C Agrivoltaics Technical Assistance Communities

NREL Agrivoltaics Technical Assistance Framework

Agrivoltaics Groundwork

What are key elements to consider before building and designing an agrivoltaics project?

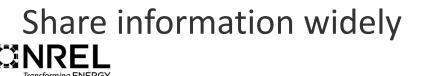
What activities can continue after an agrivoltaics project is built?

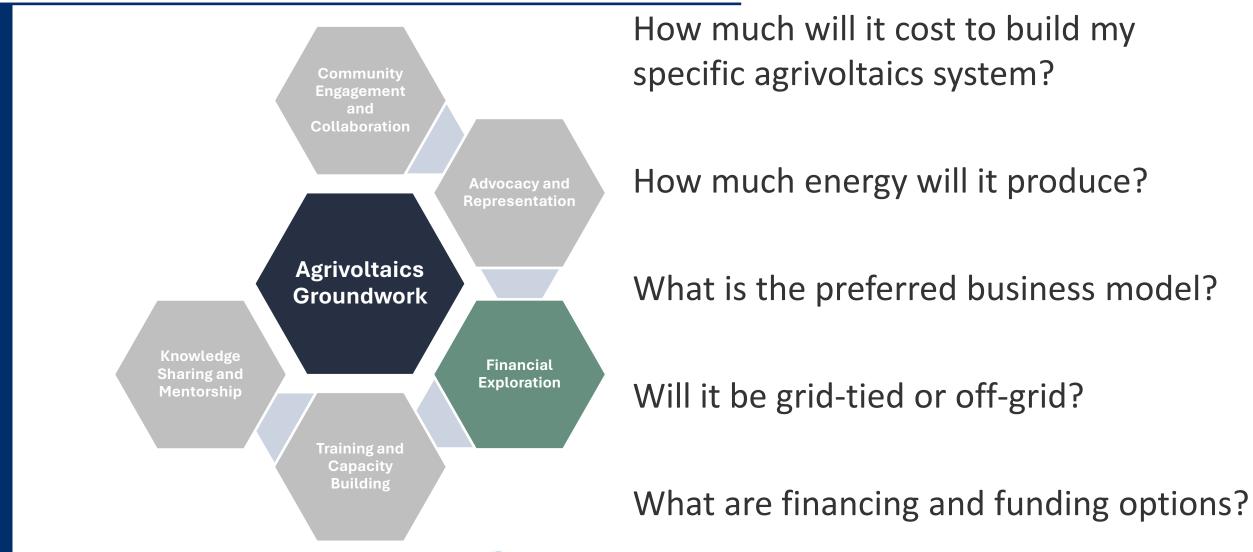
Agrivoltaics Groundwork: Community Engagement

Identify stakeholders (solar, agricultural, educational, government, neighbors)

Discuss plans, alternatives, options

Start early, engage often


Agrivoltaics Groundwork: Advocacy and Representation


Assess local policies, regulations, and permitting requirements

Ensure diverse voices are heard in development and implementation of agrivoltaics projects

Represent other farmer, land-users in process

Agrivoltaics Groundwork: Financial Exploration

Agrivoltaics Groundwork: Training and Capacity Building

Online webinars Educational and training programs **On-site agrivoltaics tours Technical Assistance programs** Peer-to-Peer learning networks **Development of new resources** Capacity building for governments in addition to farmers and solar industry Policy development

Agrivoltaics Groundwork: Knowledge and Mentorship

Work with others wanting to build an agrivoltaics facility Create and online platform for sharing ideas and experiences Mentorship programs Share information and data widely

Agrivoltaics Groundwork Takeaways

Conducting Groundwork before designing and building an agrivoltaics system can lead to improvements

Knowing your options and available alternatives will help you customdesign your agrivoltaics system to your needs

Agrivoltaics projects can provide multiple community benefits

Learn More: Session 3

Agrivoltaics 101 July 23

Basics, history, and potential benefits

Agrivoltaics Groundwork July 30

Collaboration and partnerships for success

Agrivoltaics Pathway August 6

Steps and processes to develop a project

Kate Doubleday

Model Engineer and Agrivoltaics Researcher

Jordan Macknick

Agrivoltaics Principal Investigator and Lead Energy-Water-Land Analyst

Brittany Staie

Agrivoltaics and Food-Water-Energy Nexus Researcher

Brian Mirletz

Energy Analyst and Software Engineer

This work was authored, in part, by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the United States Agency for International Development (USAID) under Contract No. AIG-19-2115. The views expressed in this report do not necessarily represent the views of the DOE or the U.S. Government, or any agency thereof, including USAID. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Additional Resources

- India Agrivoltaics Alliance (<u>https://indiaagripv.org/</u>)
 - Regional knowledge sharing and advocacy alliance
- Agrivoltaics in India website (https://www.agrivoltaics.in/) by NSEFI and IGEF
 - India agrivoltaics map, best practices, legal and policy, and case study reports
- American Solar Grazing Association (<u>https://solargrazing.org/</u>)
 - Industry association with sample contracts, example budgets, recommendations, and monthly webinars
- Agrisolar Clearinghouse (https://www.agrisolarclearinghouse.org/)
 - U.S information hub with Information Library of fact sheets
- NREL InSPIRE project (<u>https://openei.org/wiki/InSPIRE</u>)
 - Research data portal of agrivoltaics research worldwide (published in English), US agrivoltaics map
- AgriSolar website (<u>https://agrisolareurope.org/</u>) by SolarPower Europe
 - Industry group with best practice guidelines, Europe agrivoltaics map

Learn More: Session 3

Agrivoltaics 101 July 23

Basics, history, and potential benefits

Agrivoltaics Groundwork July 30

Collaboration and partnerships for success

Agrivoltaics Pathway August 6

Steps and processes to develop a project

Kate Doubleday

Model Engineer and Agrivoltaics Researcher

Jordan Macknick

Agrivoltaics Principal Investigator and Lead Energy-Water-Land Analyst

Brittany Staie

Agrivoltaics and Food-Water-Energy Nexus Researcher

Brian Mirletz

Energy Analyst and Software Engineer

Thank you!

This work was authored, in part, by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the United States Agency for International Development (USAID) under Contract No. AIG-19-2115. The views expressed in this report do not necessarily represent the views of the DOE or the U.S. Government, or any agency thereof, including USAID. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.