

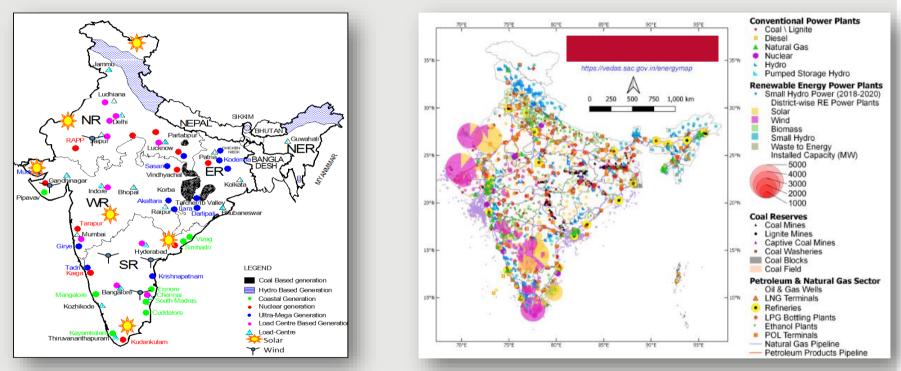
Workshop on Renewable Energy Integration and Procurement

March 18 - 19, 2024

South Asia Regional Energy Partnership (SAREP) and Sri Lanka Energy Program

Session 6A:Challenges of renewables penetration in the country

Challenges of renewables penetration in the country



Founder, CEO, Grid-India (formerly POSOCO)

FIEEE, FINAE, LFIE(I), Member NAE US, Retired CPES GOI

Distinguished Member CIGRE, Distinguished Alumnus IIT KGP

Resource Spread across India

Hydro - North-Eastern & Northern India; Coal - Central India

Renewables – Northern, Western and Southern India

Changing Generation Resource Mix towards 2030

ALL INDIA INSTALLED CAPACITY (MW)				
Resource	Mar 2023	Mar 2030	% Addition	
Hydro	42104	53860	28%	
PSP	4746	5350	13%	
Small Hydro	4944	18986	284%	
Solar PV	66780	292566	338%	
Wind	42633	99895	134%	
Biomass	10802	14500	34%	
Nuclear	6780	15480	128%	
Coal+ Lignite	211855	251683	19%	
Gas	24824	24824	0%	
Total	415469*	777144**	87%	
BESS	0	41650 (5-hr)		

*Excluding 2136 MW of Hydro imports from neighboring countries and 589 MW Diesel based capacity

**Excluding Hydro Imports of 5856 MW

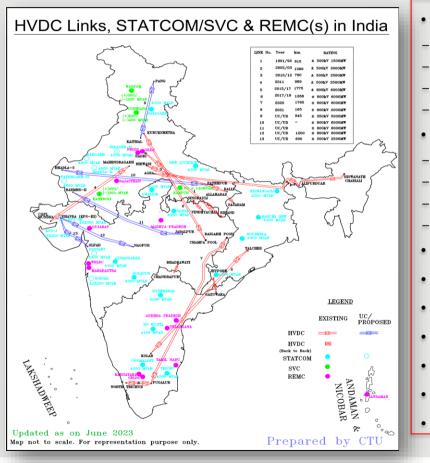
Source: CEA Report On Optimal Generation Capacity Mix for 2030 (Ver 2.0) https://cea.nic.in/wp-

content/uploads/notification/2023/05/Optimal mix report 2029 30 Version 2.

0 For Uploading.pdf

Maximum Demand Met (GW)	~240#	334^
Total Generation Installed Capacity (GW)	428 *	777
Non-fossil Fuel Based Generation Installed Capacity (GW)	188 [*]	500
Wind & Solar Installed Capacity (GW)	117*	393

2024

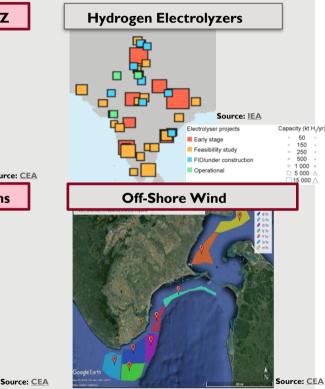

2030

As on 31st Dec 2023 as per Operational Data of Grid-India * As on 31st Nov'23 from CEA Installed Capacity Report ^ CEA Report on Optimal Capacity Mix 2030 (Version 2.0)

https://cea.nic.in/wp-

content/uploads/irp/2023/05/Optimal_mix_report_2029_30_Version_2.0_For_Uploading.pdf

Transmission Infrastructure gearing up towards 2030


Transmission Lines (≥220kV) - 4,81,326 ckm

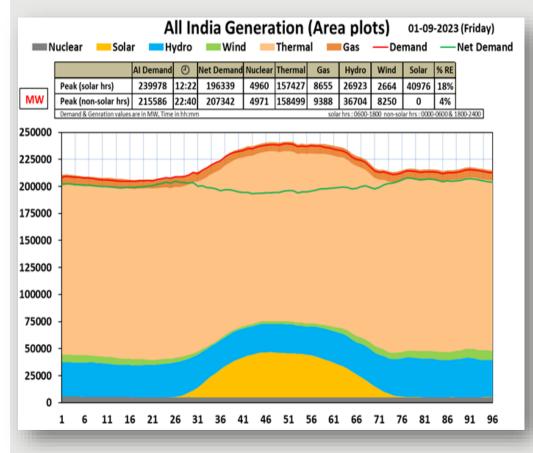
- 765 kV: 54,672 ckm
- 400kV: 2,01,541 ckm
- 220kV: 2,05,738 ckm
- HVDC: 19,375 ckm
 - Transformation Capacity (≥220kV) : 12,25,260 MVA
- 765 kV: 284200 MVA
- 400kV: 447433 MVA
- 220kV: 460127 MVA
- HVDC: 33500 MVA
- 3 nos. of ±800kV HVDC Bipole (18 GW)
- 5 nos. of ±500kV HVDC Bipole (10.5 GW)
- 1 no. of ±320kV VSC HVDC (2 GW)
- 4 nos. of HVDC Back-to-Back (3 GW)
- 20 no. of Hybrid STATCOMs (11,350 MVAr)
- 4 no. of SVC (2500 MVAr)
- 48 nos. FSC/TCSC

Transmission System Augmentation Strengthening Integration of over 500 GW Renewables by 2030

- Additional requirement of Inter State Transmission System by 2030 for 66.5 GW Renewable Energy Zones (REZs)
 - Transmission Lines: 50,890 ckm
 - o Transformation Capacity: 433,575 MVA
- 37 GW wind power auction trajectory announced till 2030
 - \odot Evacuation system of off-shore wind power has been identified for 10 GW
- o Green Hydrogen Mission
 - 5 MMT per annum by 2030
- Cross Border Interconnections
 - o >5000 MW additional capacity planned

2 nos. of ±800kV HVDC Bipole and 3 nos. of ±350kV VSC HVDC Hybrid STATCOMs, SVCs also planned

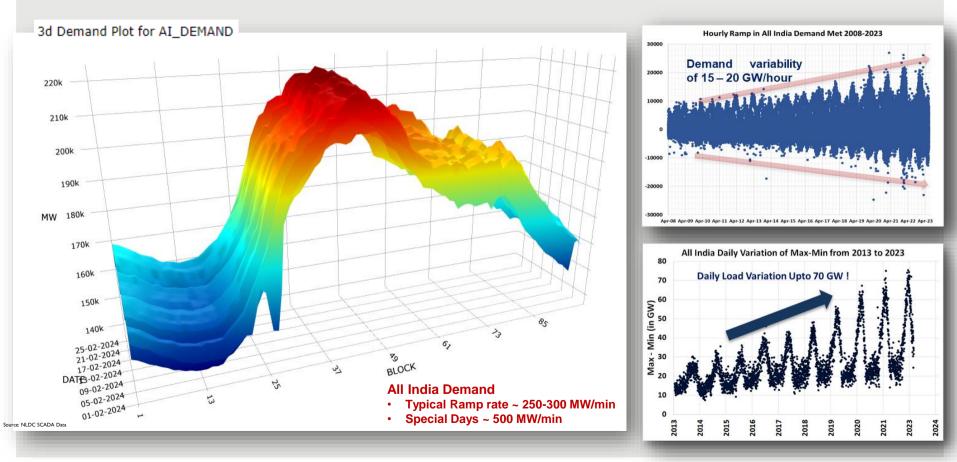
Distribution Reforms


Promotion of Agricultural Solar Pumps

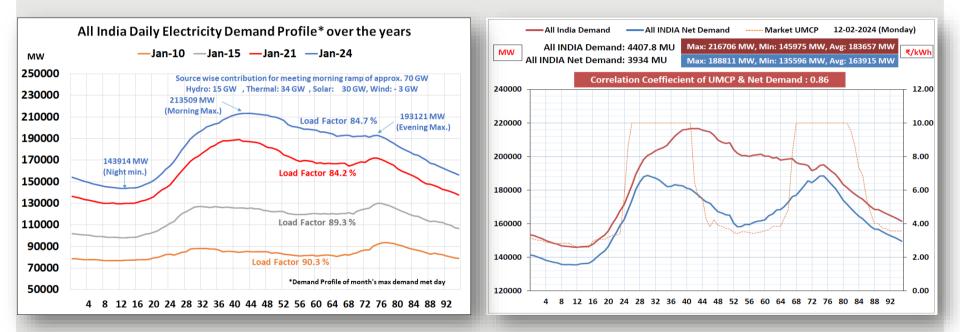
- o PM-KUSUM (Pradhan Mantri Kisan Urja Suraksha evam Utthaan Mahabhiyan) Scheme
- Unnat Jyoti by Affordable LED for All (UJALA) Programme
 - $\,\circ\,$ LED bulbs, LED tube lights and energy efficient fans to replace conventional and inefficient variants
- Street Lighting National Programme (SLNP)
 - $\,\circ\,$ Smart and energy efficient LED street lights across India
- Shifting of agricultural power consumption to solar hours
 - o Reliable power supply to farmers during daylight hours
- Revamped Distribution Sector Scheme (RDSS) nationwide Smart Meter program under implementation

 $\,\circ\,$ 43 million smart meter contracts awarded since the start of 2023

Resource Adequacy

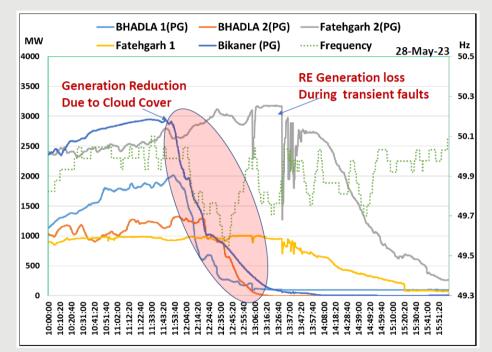


- Increasing non-solar peak
- Limited support from wind during non-solar hours
- Cloud cover, sandstorm
- RE generation loss due to fault ride through issues
- Resource droughts
 - Long duration storage, quick starting thermal
- Adequacy of reserves vital to handle contingencies

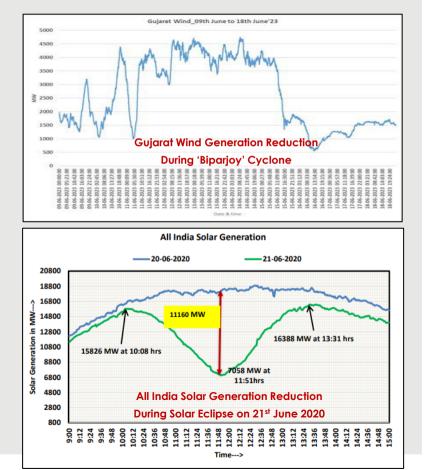

Assessment of Reserve Requirement

Type of	Inter-state	Intra state	Total All
reserve	level	level	India level
	MW	MW	MW
Secondary	3788	3211.6	7000
Tertiary	3788	8887.6	12676
Total	7576	12099.2	19676

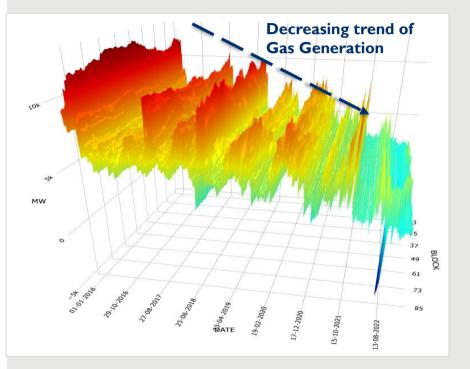
Growing Need for Flexibility - Increasing All India Demand Ramp

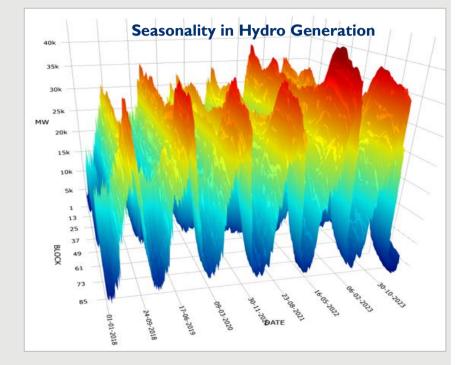


Flexibility Requirement

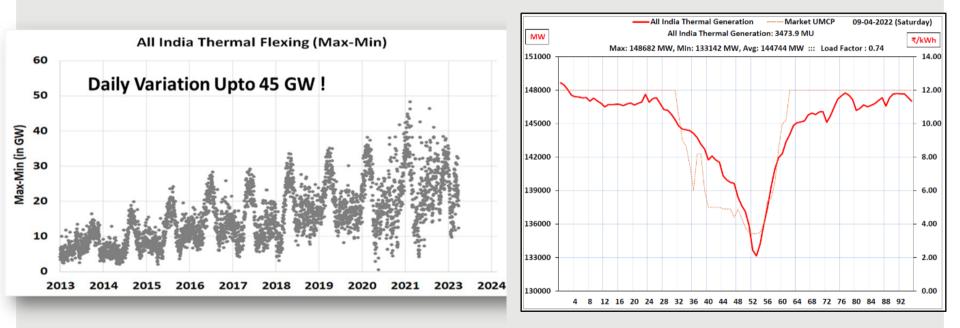


CEA: Flexibilization of Coal-Fired Power Plants (Tech. min upto 40 %) Phase 1: July,2024-Jun,2026 : 90 Units, Phase 2: July,2026-Jun,2028 : 160 Units Phase 3: July,2028-Dec,2029 : 143 Units, Phase 4: Jan,2030-Dec,2030 : 196 Units

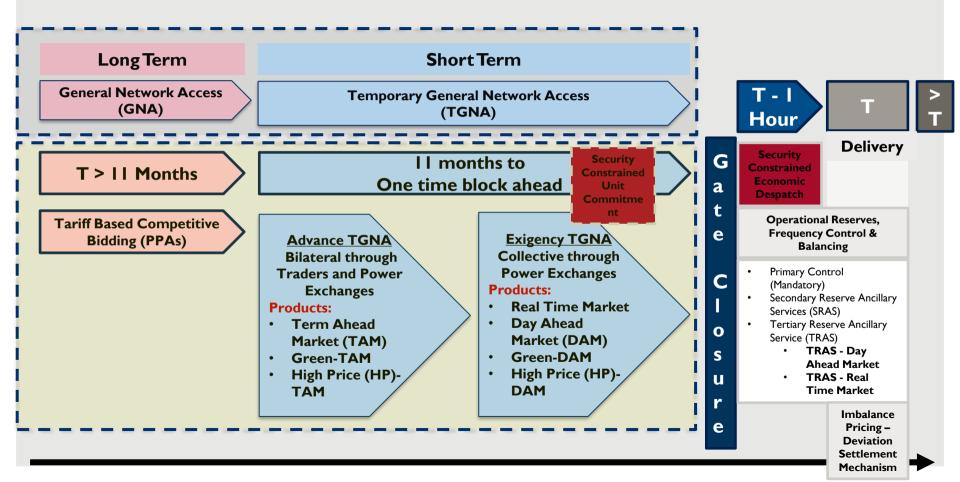

Growing Need for Flexibility – Cloud Covers and Increase in Extreme Weather Events


- Solar generation loss during peak solar hour due to cloud cover
- Approx. 8000 MW solar generation reduced within 1 hour.
- After 13:00 hrs, multiple transient faults occurred in RE complex

Flexibility Providers – Gas and Hydro Based Generation



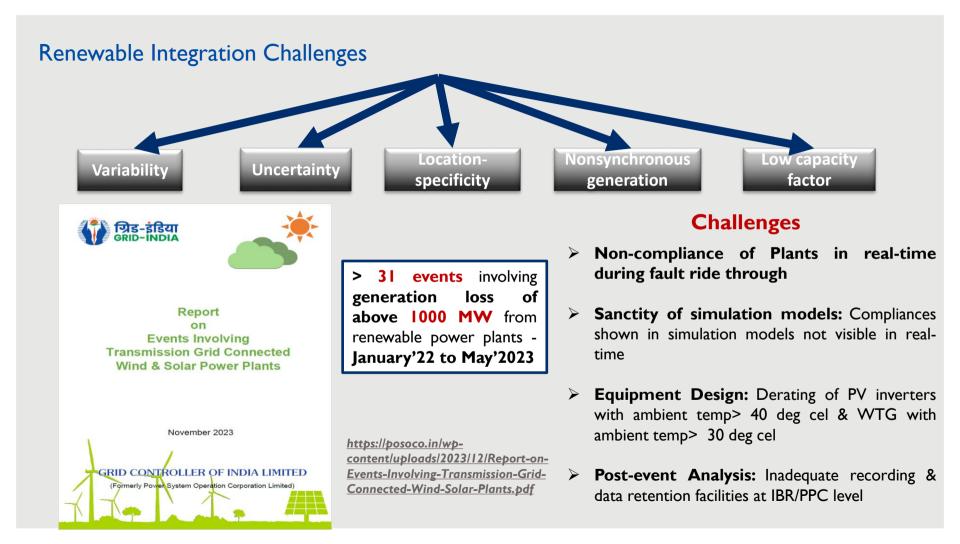
- Flexibility from Gas Generation constrained by availability of Gas !!
- Limited flexibility in Off-grid Gas Stations; Limited flexibility in gas stations where open cycle operation is not possible

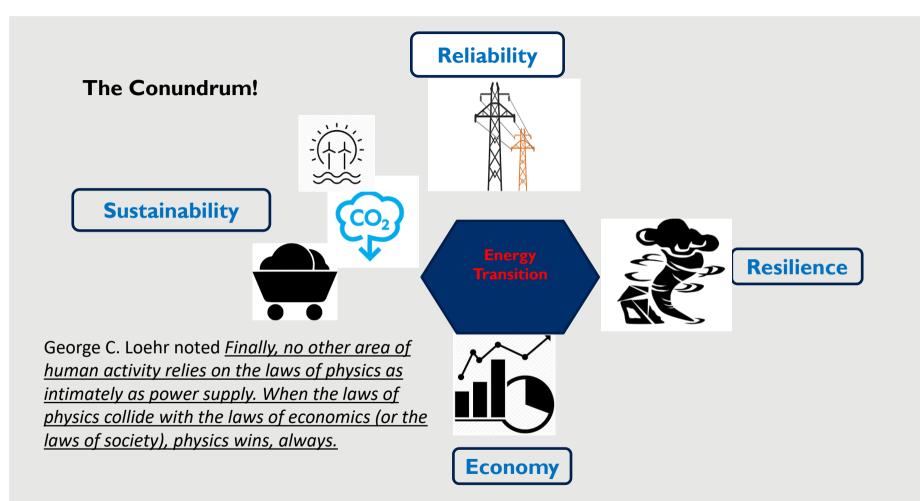


Flexibility from Hydro Generation is highly seasonal !!

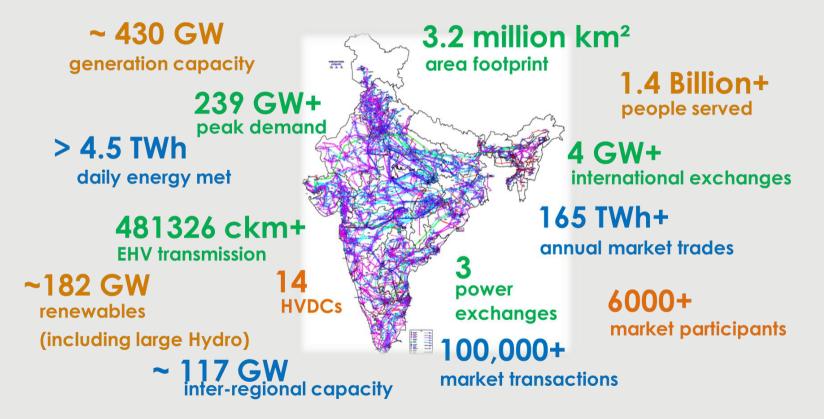
Flexibility Providers - Coal/Lignite fired Generation

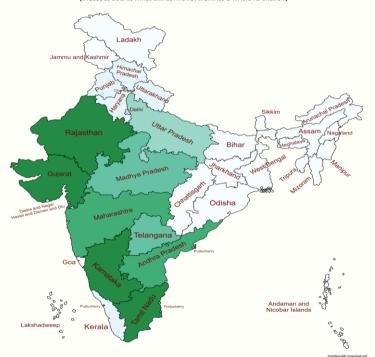
Market Structure – Access & Contracts delinked

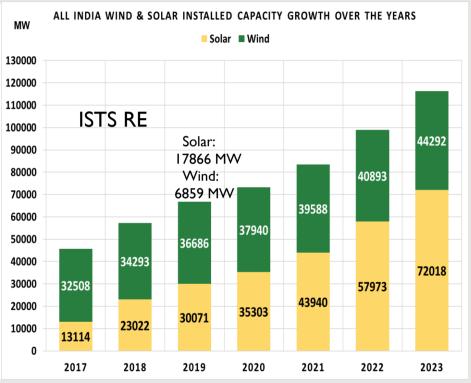



Power System Resilience – Climate Change Induced Events

- Periodic mock drills for system restoration and operation of backup control centres
- Decongesting large RE pooling stations in cyclone prone areas at transmission planning stage
- Feedback for ensuring provision for start-up power from low voltage feeders at large generating station
- Reconfiguration of transmission system for flexibility under different operating conditions
- Creation of war-rooms during disaster
- Cyber security

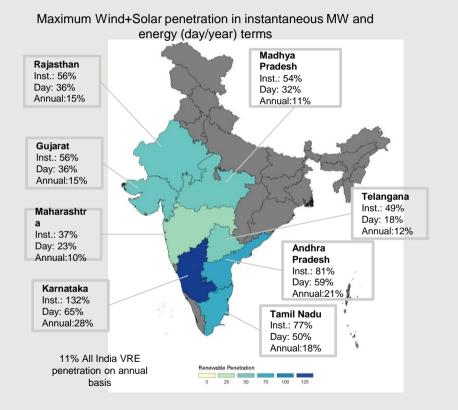


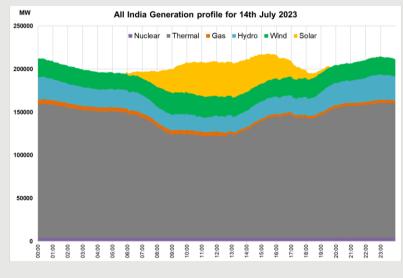



Dimensions of Indian Power System

Renewable Energy Footprint in India

STATEWISE FOOTPRINT OF RENEWABLE ENERGY INSTALLED CAPACITY IN INDIA (INCLUDES SOLAR, WIND, SMALL HYDRO, BIOMASS & WASTE TO ENERGY)




Source: CEA Installed Capacity Report https://cea.nic.in/installed-capacity-report/?lang=en

Source: CEA Installed Capacity Report

https://cea.nic.in/installed-capacity-report/?lang=en

Growing penetration of Renewables in the grid

Highest Instantaneous RE penetration of ~32.4 % was recorded on 14th July 2023

Renewable Energy in India: Vision 2030

ALL INDIA INSTALLED CAPACITY (MW)				
Resource	Mar 2023	ar 2023 Mar 2030		
Hydro	42104	53860	28%	
PSP	4746	5350	13%	
Small Hydro	4944	18986	284%	
Solar PV	66780	292566	338%	
Wind	42633	99895	134%	
Biomass	10802	14500	34%	
Nuclear	6780	15480	128%	
Coal+ Lignite	211855	251683	19%	
Gas	24824	24824	0%	
Total	415469*	777144**	87%	
BESS	0	41650 (5-hr)		

*Excluding 2136 MW of Hydro imports from neighboring countries and 589 MW Diesel based capacity **Excluding Hydro Imports of 5856 MW

Source: CEA Report On Optimal Generation Capacity Mix for 2030 (Ver 2.0)

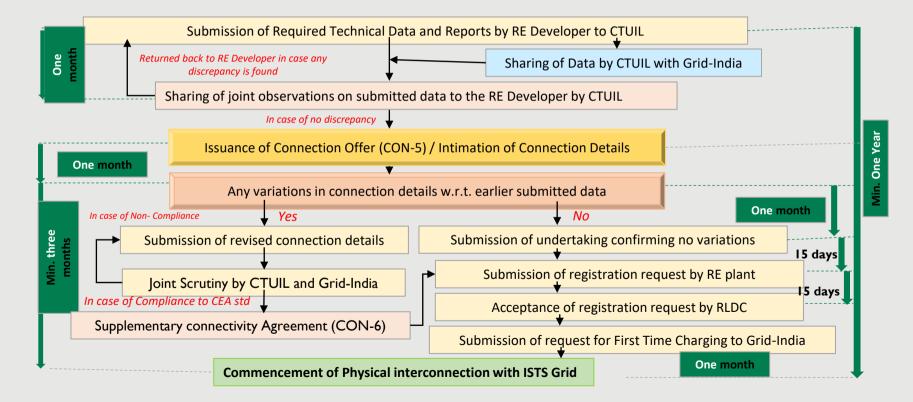
https://cea.nic.in/wp-content/uploads/notification/2023/05/Optimal_mix_report_2029_30_Version_2.0_For_Uploading.pdf

	Maximum Demand Met (GW)	~240#	360
	Total Generation Installed Capacity (GW)	425*	777
	Non-fossil Fuel Based Generation Installed Capacity (GW)	185*	500
The second se	Wind & Solar Installed Capacity (GW)	116*	393

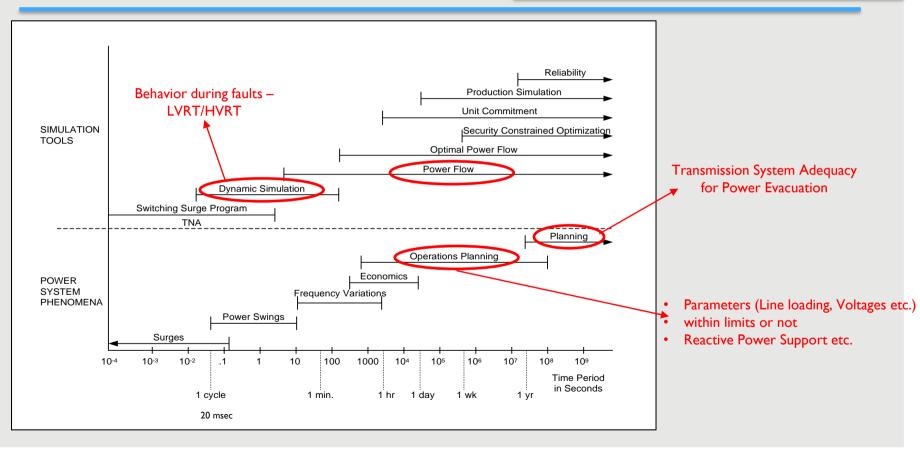
2023

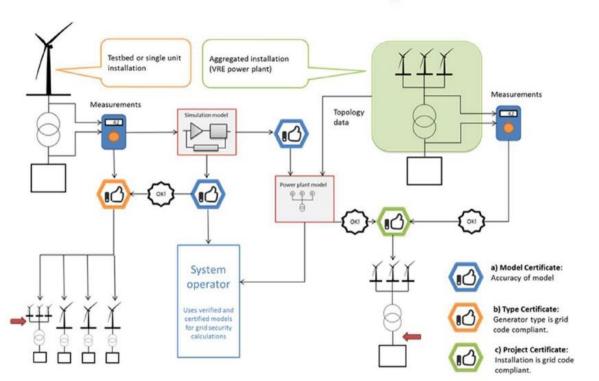
2030

As on 31st October'23 as per Operational Data of Grid-India


* As on 31st July'23 From CEA Installed Capacity Report <u>https://cea.nic.in/installed-capacity-report/?lang=en</u>

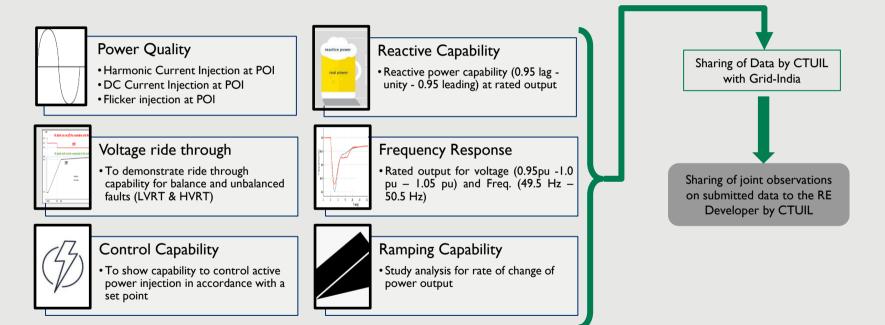
RE Generator - Grid Integration Process


from CTU for Deemed GNA/T-GNA granted

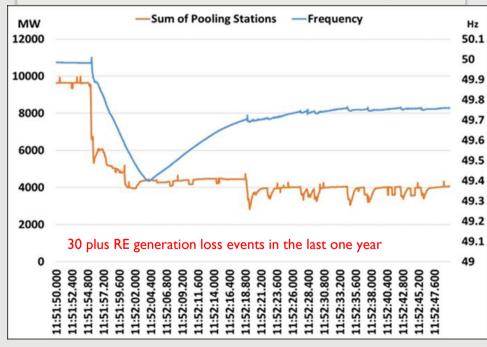

Technical Data Submission-Time Line

Power System Simulation – Timelines

Validity of simulation models must for deriving accurate insights from simulation results



Model validation is needed to deal with 10.000s of generation units


Credit: Thomas Ackermann, Energynautics

Test/Study reports for submission to Nodal Agency

India: Large Generation Loss Events in RE Complexes

Frequency dip due to ~7000 MW RE Generation Loss in Northern Region

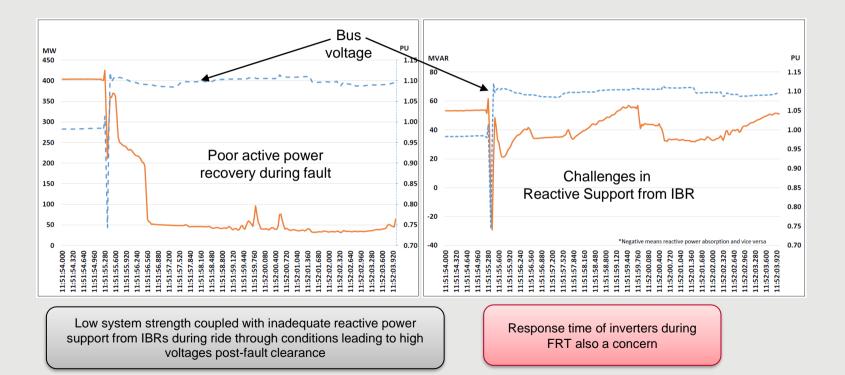
Key Issues Identified

Non-compliance to specified CEA Standards

- •Reactive Power Capability
- •LVRT/HVRT Non-compliance

Issues in Post-event Analysis

- •Non-availability Event Recording facility
- •Exclusion of Ride-through incidents from Event Logging
- •Delay in submission of Event Data

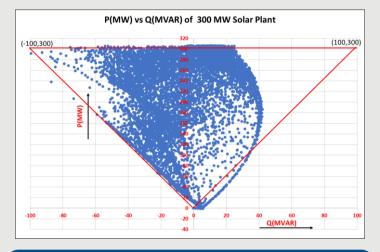

Incorrect Protection and Control Settings

- •O/V Settings at 220/33 kV level/anti-islanding protection
- •PPC in constant reactive power mode

Sanctity of Submitted Models

•Deviation in actual response of RE plants w.r.t simulation model response

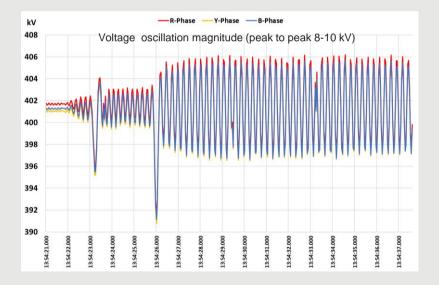
Challenges – Non compliance to Fault Ride Through


Challenges – Voltage Regulation at RE pooling stations

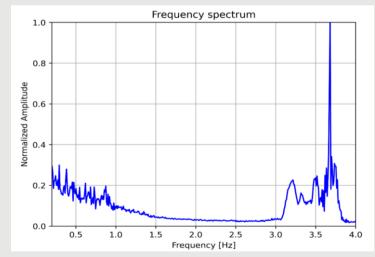
Voltage ratUndaRei 20(706_BIS2)[0] BIADIA 2FG[765_BIS2][0] BIADIA 2FG[765_BIS2

VRE generation & voltages at RE pooling stations

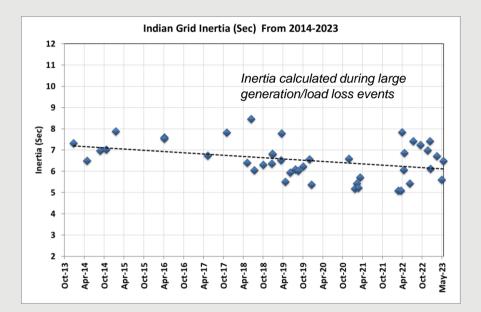
Large Fluctuation in Voltages (High v/s Low RE Period) – 8-10% voltage variation within same day


Several 765 kV lines opened daily for voltage regulation as last resort

Need for compliance to technical standards by RE plants – dynamic reactive support required to maintain power factor at POI between 0.95(lag) to 0.95(lead)


Challenges – Voltage oscillations in RE complex

Intermittent Forced Low Frequency Oscillations during solar hours



Dominant Modes

- 0.069 Hz
- 0.03 0.08 Hz
- 2.5 -5 Hz

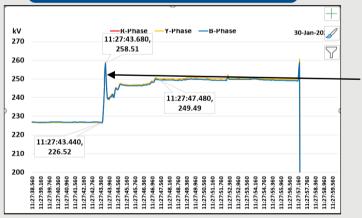
Inertia in the Indian Power System

Local inertia may influence oscillatory modes and their damping

Xu, Jang & Overbye, Location-Dependent Impacts of Resource Inertia on Power System Oscillations, 51st Hawaii International Conference on System Sciences, 2018 System inertia on a decreasing trend

- Increasing penetration of nonsynchronous generation
- Present levels of inertia not of particular concern

Indian Electricity Grid Code 2023


- Online monitoring of Inertia
- Minimum level of inertia to ensure frequency remains above UFLS threshold after reference contingency
- Synchronous generation to be quick started to maintain minimum inertia
 - o Including curtailment of renewables

https://cercind.gov.in/Regulations/180-Regulations.pdf

Challenges – Low Short Circuit level at RE pooling stations

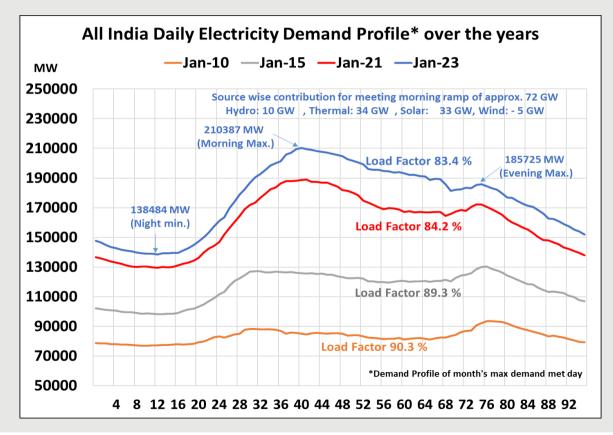
SCR of ISTS RE pooling station						
Region	Voltage level	Station Name	3-ph fault current (kA)	3-Ph fault MVA	Generation being pooled (MW)	SCR
NR	220	Fatehgarh-II_A	20	7483	2651	2.8
	400	Fatehgarh-II	19	13082	4822	2.7
	220	Bhadla	31	11770	3130	3.8
	220	AREPRL	13	5103	1406	3.6
	400	Bikaner	25	17436	3215	5.4

Further reduction in SCR during network depletion

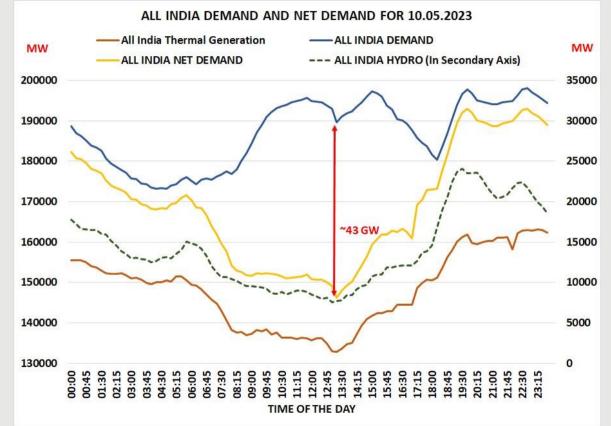
Large change in voltages during switching of network elements

Inverter controls may not function in stable manner under low system strength conditions, increasing chance of undesirable behavior and control interactions. NERC Whitepaper on short circuit modeling and system strength

Switching of 240 MVAR Line reactor Depleted network before event


32 kV Voltage rise in phase to neutral

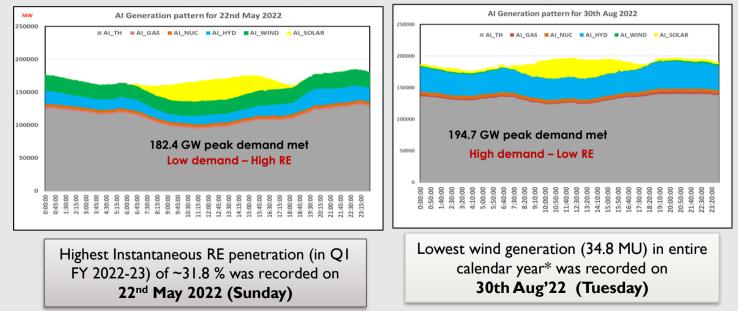
EHV Lines tripped on Overvoltage


Triggered HVRT and consequent loss of 2000 MW generation

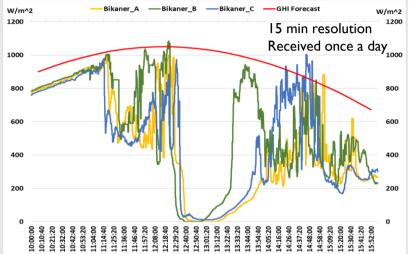
Several incidents of RE generation loss due to large voltage fluctuations during faults and LVRT/HVRT noncompliance

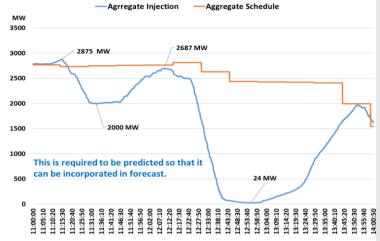
Changing load shape

Flexibility – Growing Need



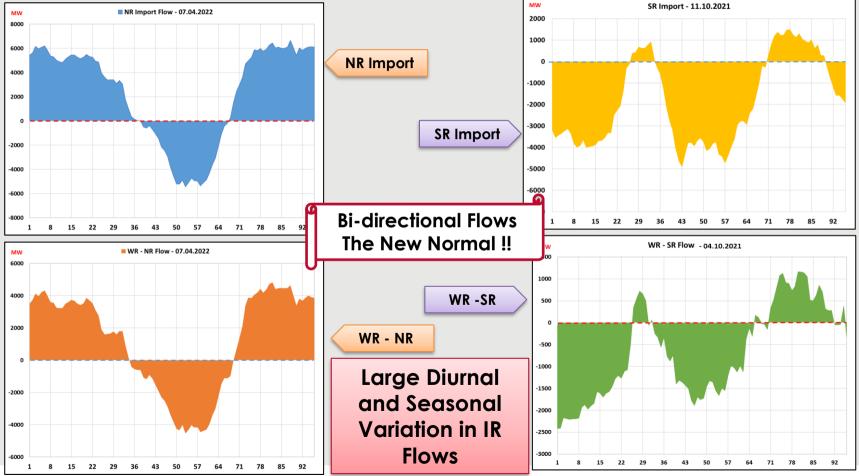
Major Concerns

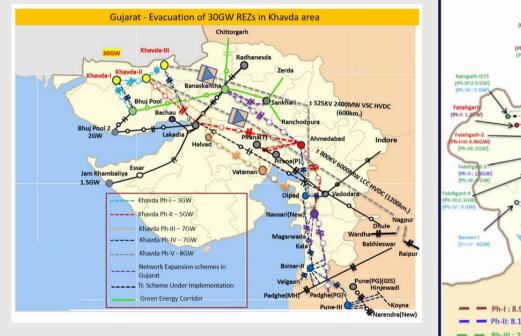

- Increasing "Duck Curve" Belly
- Increasing difference b/w Max. and Min Demand
- Issues in absorbing additional RE (solar) beyond a certain quantum
- Storage + Reduction in Minimum Operational Level of both inter & intra state coal-fired plants required
- Improvement in 1% ramp rate of coal-fired plants


Resource Adequacy to be ensured in all Time-Frames

- Resource Adequacy Challenges due to the variability of RE
- Reserve requirements and system constraints would also vary

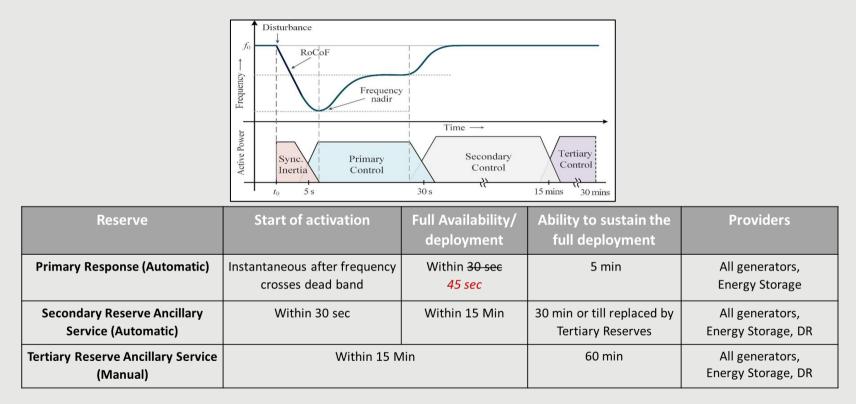
RE forecasting challenge

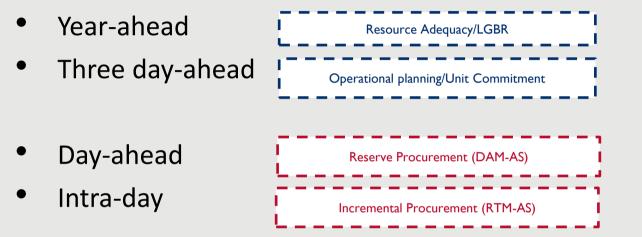



- Dust storm and cloud cover over Bikaner area during 1115 to 1400 hrs on 06th June 2023
- ✤ Large variation in GHI
 - I000 W/m² at III5 hrs to almost 500 W/m² by II:30 hrs.
 - GHI recovered by 12:00 hrs and then reduced almost to zero by 12:50 hrs.

- Before 1115 hrs: Forecast error = Negligible
 11:15 to 11:30 hrs : Maximum forecast error = 875 MW
- 12:10 to 12:54 hrs : Maximum forecast error = - 2650 MW

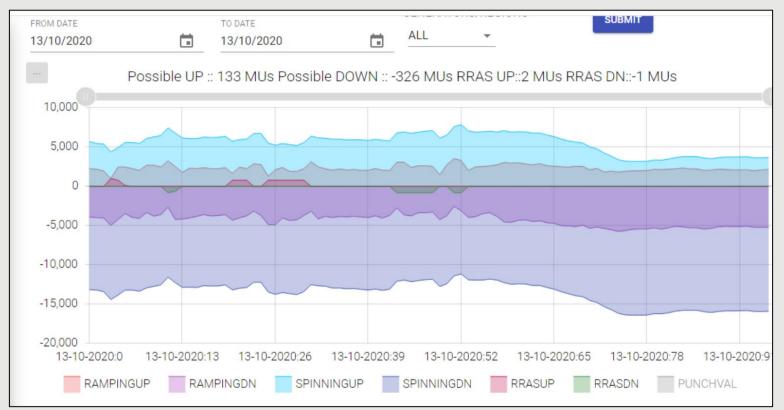
Transmission Flows – Behaviour Change


Requirement of Look Ahead Transmission Planning

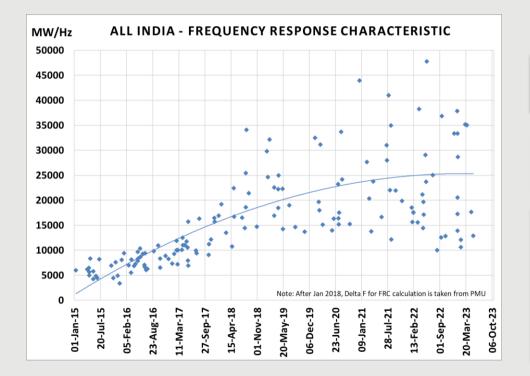

Transmission for Rajasthan REZ (75GW) S-60,W-15,BESS-22.5GW (by Dec'30) To Mora Bikaner-2 Bhiwadi (Reversal of Balia-(Ph-II: 1.9GW) Bhiwadi HVDC link (Ph-IV: 3.7 GW) (Ph-IV: AGW Bikaner (Ph-I:+II: 3.865GW) Bhadla-2 (Ph-I+II: 4.4GW) Bikane (RVP) (Ph-III: 1.5GW) Bhadla (00 to Balla (Ph-I+II: +1.25G Gwalio h-I: 8.9 GW Indore (WR) Ph-II: 8.1 GW Ph-III: 20 GW From Banaskantha Tr. Sys for REZ (75GW)

Innovative Solutions for Grid Stability – VSC Based HVDC, RE + Storage, FACTS Devices, Synchronous Condensers etc.

System Balancing Continuum



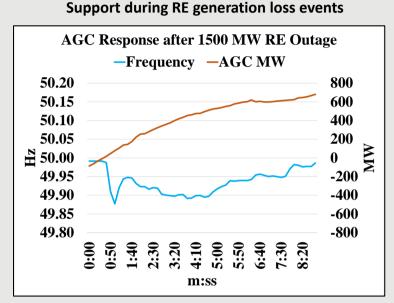
Reserve Estimation, Planning and Procurement



Type of reserve	Inter-state level	Intra state level	Total All India level
	MW	MW	MW
Secondary	3788	3211.6	7000
Tertiary	3788	8887.6	12676
Total	7576	12099.2	19676

Visualization of Reserves

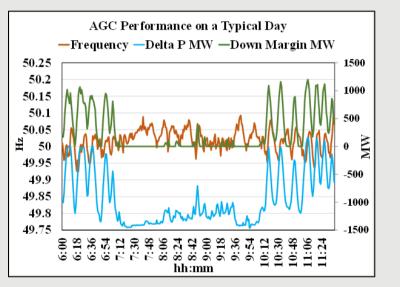
Primary Response


- First line of defence following disturbance
- Mandatory service in most systems worldwide

FRC- Quantifies response from generators following disturbance

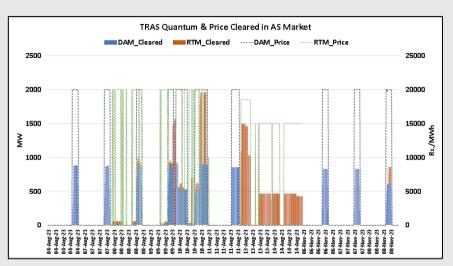
Consistent improvement in primary response over the years

- Testing of primary response in India started for the first time on 23rd September 2020
- By Nov 2023, testing has been completed at 218 number of units with 72 GW generation capacity.


Automatic Generation Control – balancing system with high RE

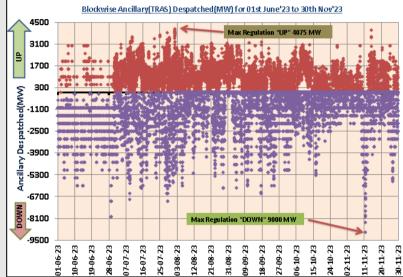
During contingencies like generation loss or load loss, AGC quickly reacts by changing the load set points of the generators under remote and thereby helps in driving frequency to 50 Hz.

Load following during RE generation ramping


~ AGC helps in controlling high frequency during such solar pickup periods.

Maximum Up and down regulation up to +/-2000 MW in response to frequency changes - available reserves fully utilised

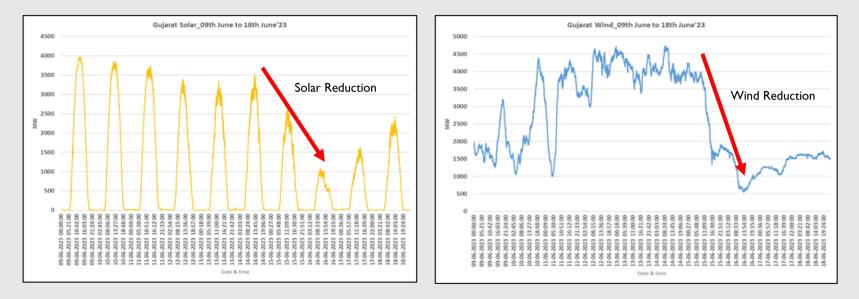
Interest towards intra-state AGC expressed by Maharashtra, West Bengal, Uttar Pradesh, Delhi & Haryana


Frequency Control with Tertiary Reserves Ancillary Services

TRAS implemented from 1st June 2023 onwards

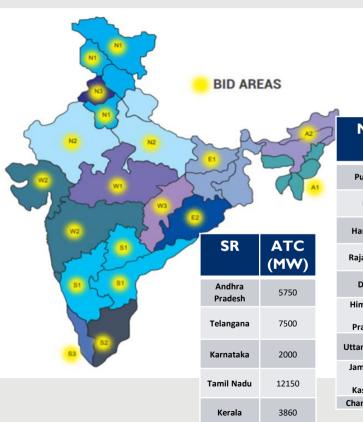
Bids for TRAS received only on 11 days since 1st June '23

Need to enhance participation of generators, especially at intra-state level for providing reserves



Shortfall TRAS being dispatched from unrequisitioned capacity of ISGS

Constraints in reserve availability, especially in up reserves during nonsolar hours


16-12-2023

Grid Resilience – RE Generation during 'Biparjoy' Cyclone ~ 09 June to 18 June '23

Prolonged outage of RE generation facilities for maintenance check post cyclone

General Network Access (GNA): Congestion Management

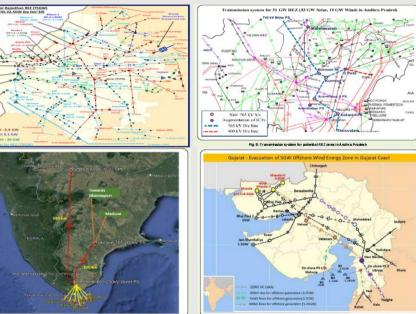
- Assessment and declaration of total transfer capability (TTC), available transfer capability (ATC), Transmission reliability margin (TRM) of all States/Regions - II months in advance, multiple scenarios
- All states to be configured as bid areas under GNA regime
- Coordination for transmission line outages to facilitate infrastructure (highway, railway etc.) augmentation

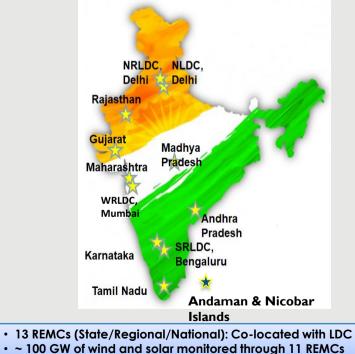
NR	ATC (MW)	WR	ATC (MW	ER	ATC (MW)	NER	ATC (MW)
Punjab	9000	Maharashtra	9760	West Bengal	6826	Arunachal Pradesh	315
UP	15500	WidfidfdSfftfd	9700			Assam	1710 (00 - 17 & 21-24 hrs)
Haryana	8850	Gujarat (00:09 Hrs &	12450	Sikkim	175		1660 (17-21 hrs)
		17:24 Hrs)				Manipur	305
Rajasthan	7000	Gujarat (09:17 Hrs)	12050	Odisha	3698	Meghalaya	320 (00 - 17 & 21-24 hrs)
Delhi	7000	Madhya	12118	Jharkhand	1811		240 (17-21 hrs)
Himachal		Pradesh	12110			Mizoram	150 (00 - 17 & 21-24 hrs)
Pradesh	1300	Chattisgarh	3536	Bihar	7419		140 (17-21 hrs)
Uttarakhand	1600	Goa	695	DVC	1692	Nagaland	285 (00 - 18 & 22-24 hrs)
Jammu &	2800					Tripura	290 (18-22 hrs) 329 (00 - 18 & 22-24 hrs)
Kashmir							304 (18-22 hrs)
Chandigarh	380						

Congestion management during transition phase

"Transmission System for Integration of over 500 GW RE Capacity by 2030"

- Major upcoming non-fossil based generation centres -Fatehgarh, Bhadla, Bikaner in Rajasthan, Khavda in Gujarat, Anantapur, Kurnool RE Zones in Andhra Pradesh, offshore wind potential in Tamil Nadu and Gujarat, and RE parks in Ladakh by 2030.
- Addition of 8,120 circuit-km (c-km) of High Voltage Direct Current (HVDC) transmission corridors (+800 kV and +350 kV), 25,960 c-km of 765 kV AC lines, 15,758 c-km of 400 kV AC lines and 1,052 c-km of 220 kV AC lines.
- Evacuation of 10 GW of offshore wind capacity located in Gujarat and Tamil Nadu.

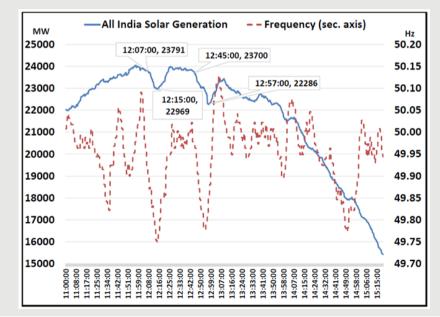



Fig9: Transmission system for off-shore-vind potentials ones in Tamil Hadu

Rg 5: Transmission system for off-share vind patentials ones in Bujarat

Source: Central Electricity Authority, 2022

Renewable Energy Management Centre (REMC)


Real-time Monitoring, Visualization and Situational Awareness of Renewables

~ 100 GW of wind and solar monitored through 11 keW ~ 25 GW+ scheduling at Inter-State level

Cloud cover events

Approx. 800 MW reduction in solar generation in 8 minutes and restoration in 13 minutes

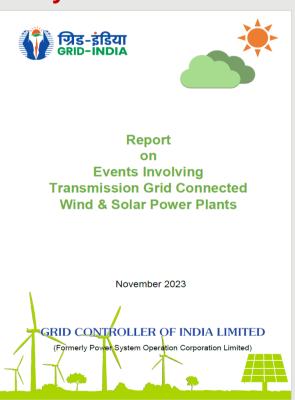
Large Generation Loss in RE Pocket: Way Forward

I. RE Original Equipment Manufacturers (OEM)

- Equipment design to handle supply of rated MW, and required MVAR
- Equipment customization for ambient conditions in India
- High resolution recording instruments

2. RE Developers

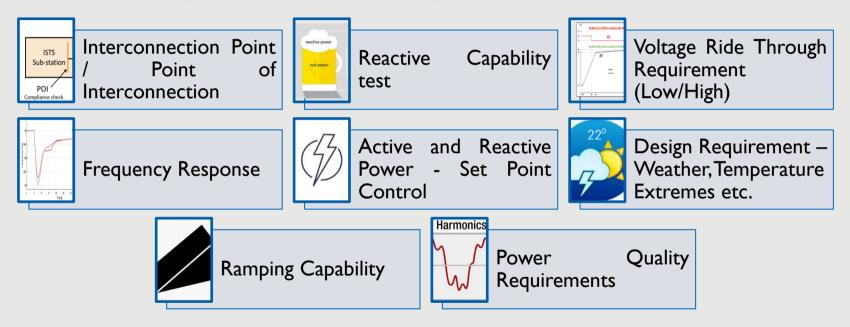
- Type testing, model validation, time submissions of model data
- Configuration of converter & plant controls to reflect realistic conditions
- Protection of Inverter/WTG terminal and co-ordination with POI
- Sharing of High-resolution disturbance records
- Compliance to Cyber Security Guidelines


3. Strengthening of Technical standards

- Construction standards for Renewable facilities
- Standards for new facilities BESS, Electrolysers
- Short Circuit Ratio
- Enforcing compliance

4. Institutional Capacity Building

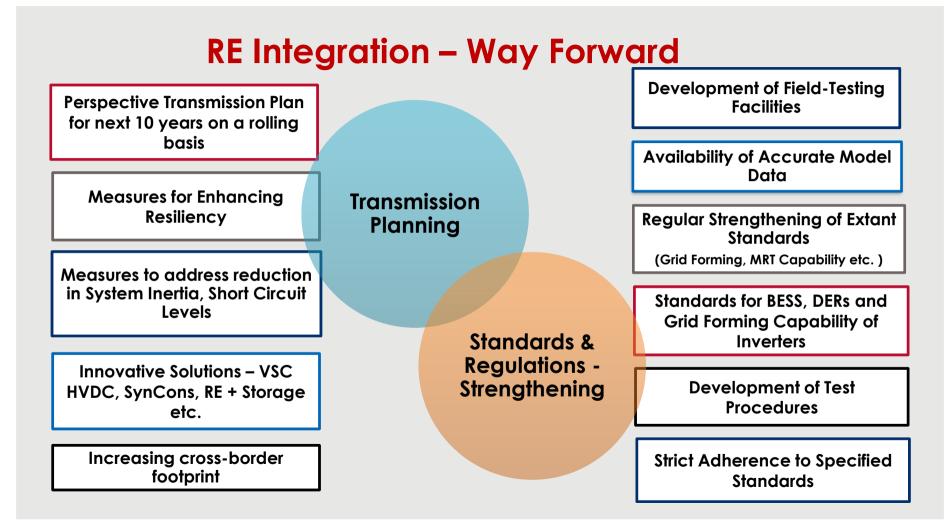
- Strengthen Ecosystem for testing and type certification of RE based resources
- Agencies within India need to be developed and accredited by CEA/NIWE/NISE for testing and certification
- Human resource development for personnel in renewable energy sector


31 events involving RE generation loss of > 1000 MW between Jan 2022 to March 2023: Challenge in Future: Short Circuit Level, System Inertia, Dynamic VAR Support

Link: https://posoco.in/report-on-events-involving-transmission-grid-connected-wind-solar-plants-2/

CEA Technical Standards for Connectivity to the Grid

Technical requirements specified for Wind and Solar Generating Stations in CEA Connectivity Standards



Clean Energy Transition – Way Forward

S. No.	Voltage & Frequency Support	New behavior of the Power System		
1.	Increasing Rate of Change of Frequency (RoCoF)	Identifying power system restoration services near RE rich areas		
2.	Decreasing nadir frequency	Reduced fault currents, LCC commutation failures, Fault ride through failures etc.		
3.	Excessive frequency deviations	Decreased damping		
4.	Static reactive power balance	Resonances due to cables and PE		
5.	Dynamic reactive power balance	Sub-synchronous control interaction		
6.	Larger voltage dips	Control of bi-directional flows		
7.	Ramp management / Flexibility			
8.	Portfolio management, day-ahead resource adequacy, unit commitment			
9.	Estimation of generation reserves			

Bulk of essential reliability services such as inertia, frequency and voltage control, system restoration support, power oscillation damping, short-circuit power, etc. being provided by conventional generation sources

With transition to a high renewables system, VRE plants need to be equipped to provide these essential grid services

RE Integration – Way Forward

Energy Storage – Timely Implementation

Reduction in Minimum Operational Level of both Inter & Intra state Coal-fired plants

Improvement in Ramp Rate of coal-fired plants

Metrics for Measurement and Remunerating Flexibility services

Valuation of Hydro Flexibility

Resource Adequacy and Flexibility Frequency Control and Reserves Estimation of Generation Reserves

Participation of plants in providing all type of Reserves

Frequency Control Services by RE Plants and BESS

Sharing of Responsibility by all Control Areas to provide Reserve Response

Demand Response

Prof Janusz Bialek Quotes

• Prof Janusz Bialek in his Nov 2014 posting on PowerGlobe while discussion on Bangladesh blackout.

"Generally, it is worth noting the obvious that blackouts happen even when (N-1) contingency rule is obeyed but more than one element fails. However N is quite general as power system is a complicated large-scale cyber-physical system so N contains not only power equipment failures (which are relatively easy to understand and deal with) but also people, communication, markets, other infrastructures (e.g. gas), weather and anything else that influences power system operation. Analysing those dependencies is fascinating and requires an interdisciplinary approach combining efforts of engineers, mathematicians, physicists, computer scientists, social scientists and economists. Concentrating only on power engineering is so much last-century...'

• From 'known unknowns' to 'unknown unknowns'......Jan 2020

Thank You

