

Evolving Technologies for Green Hydrogen

12/05/2023

Copyright 2021, Plug Power Inc.

Agenda

- About Plug
- Why Green Hydrogen
- Production Technologies,Types of Electrolysers
- Global Electrolyser Market Existing capacity, Capacity estimates and Cost Curve
- Hydrogen Storage and Transportation
- Hydrogen in Energy Systems and End Applications

Plug's Ecosystem of Products

Production **End Uses** Transport and Storage **End Uses**

Electrolyzers & Liquefaction

- < 1 MW up to 200 MW architectures
- Hardware or BOO solutions available
- Installation included upon request, in house EPC
- In-house liquefaction OEM and EPC

Green Hydrogen Production Network

- Construction underway across North America, offtake volumes available 2022/23
- 500 TPD green hydrogen by 2025

Service and Maintenance

Green Hydrogen Delivery & Storage

- Green hydrogen supply from own resilient network - zero and low CI options
- No complicated long-term contracts
- Liquid or high-pressure gas deliveries
- Large volume H2 storage (liquid and gas) options

Hydrogen Fueling Stations

- 350 & 700 bar fueling stations
- Up to 3 tons per day of H2 dispensing
- Full turnkey services (EPC, service, and IoT)

FCEVs in Mobility

- Class 1-3 material handling
- Terminal tractor, cargo tractors, container mover, tow tractors
- City buses
- Class 4-8 vehicles
- Aviation for regional air-craft
- Mining equipment

Stationary Fuel Cells

- < 1 MW up to 200 MW architectures
- Millisecond response grid stabilization (peak, backup, and baseload power)
- Installation included upon request
- Hardware and PPA solutions available

-
-
-
-
- Clean, quiet, and secure!

- Uptime and reliability guarantees available
- Over 500 highly skilled technicians
- Remote monitoring and 24x7 technical assistance

Private Ecosystem

- Ask how we can build you your own ecosystem (pipelines or delivery)
- We offer custom built networks of hydrogen generation, delivery, storage, dispensing, and FC apps
- This can be across the entire US or regional in scale

Why Green hydrogen

Hydrogen

Where is Hydrogen used today?

- Hydrogen is currently used mainly for industrial processes
	- Oil refining \sim 33%,
	- Ammonia production \sim 27%,
	- Methanol production \sim 27%, and
	- Steel production ~3% globally
	- 10% is used for treating metals, processing foods, and other applications
- Hydrogen can be used as a fuel for electricity production, transport, and building heating.
- Such use is limited now but has a potential to lower global carbon emissions

Global hydrogen production accounts for 832 Mt CO2/year...more than the emissions of Germany

2017 CO₂ emissions by country and sector (Mt CO₂/year)

Source: Wood Mackenzie, 2019. "CO₂ and other Greenhouse Gas Emissions"

Colors of Hydrogen

Note: SMR = steam methane reforming.

* Turquoise hydrogen is an emerging decarbonisation option.

https://www.irena.org/- /media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf

Total final consumption (TFC) by source, World 1990-2019

 $\boldsymbol{\mathcal{N}}$ $\boldsymbol{\mathcal{N}}$ %

Energy carrier distribution by end-use, 2009 and 2050

(IEA's 2DS scenario¹) ExaJoules Electricity is only a limited part of the game

500

450

400

350

300

250

200

150

100

50

0

355

 17%

Note: 1The 2DS scenario is the IEA most ambitious decarbonization scenario and corresponds to a scenario that would limit global warming to 2°C by 2050; 2Renewables excluding power correspond mainly to biomass & waste, biofuels and solar thermal.

Source: A.T. Kearney Energy Transition Institute analysis; IEA (2012a).

Total final energy consumption1.5^oC Scenario for 2050

Energy transition is driven by:

- Low-cost renewable power
- Innovation ٠
- Decarbonisation of energy sectors .
- Security of energy supply and affordability

In 2050, 1.5 Scenario sees:

51% of TFEC – Direct electrification 14% of TFEC - Indirect electrification 11 times RE generation compared with 2020

$91%$ Renewable share in electricity

Source: IRENA Innovation Week 2023 edition \blacksquare electrolysis capacity to reach more than 550 GW by 2050 \blacksquare \bl As per IEA, Net Zero Emissions by 2050 (NZE) Scenario requires installed

Production Technologies

Hydrogen Production **Technologies**

Technologies for Hydrogen production:

- Thermal Processes such as reforming, gasification, and pyrolysis
- Biological Processes use microbes or fungi in fermentation reactions
- Thermochemical Processes use heat in combination with a closed chemical cycle to produce H2
- Electrolytic Processes
- Photolytic Processes: These processes use light energy to split water into H_2 and $O₂$

Electrolysis is attracting most attention and investments considering its **scalability, cost reduction potential, maturity and complementarity with Electricity**

Types of Electrolyzers

Alkaline Electrolyzer **PEM Electrolyzer** Solid Oxide Electrolyzer

Types of Electrolyzers

- *Water Electrolysis* literally means splitting water using electricity
- Chemical reaction is the same across technologies, $H_2O \rightarrow H_2 + \frac{1}{2}O_2$
- Voltage always pulls electrons out of the anode and through an external circuit and pushes them into the cathode
- Difference lies in how chemicals and materials inside the cell balance electron flow by passing charge carriers—ions—between the electrodes

Proton-exchange membrane

First designed for use in space, this electrolyzer type is compact and safe but expensive. Pro: Flexible size and throughput Con: Limited availability at large scale Research need: Reduction or elimination of iridium and platinum in electrodes Best use case: Tight quarters or facilities where it can be paired with renewables

Solid-oxide electrolysis cell

High operating temperatures inside these cells bring efficiency but also engineering challenges.

Pro: Electrical efficiencies of 90-100% **Con:** Untested at commercial scale Research need: Improvements to current density and cell lifetime Best use case: Industrial or nuclear sites with waste heat

Anion-exchange membrane

This promising but unproven cell chemistry uses alkaline conditions to allow for cheap electrode materials.

Pro: Flexibility without precious metals Con: Short cell lifetime Research need: Membrane materials that can withstand alkaline conditions Best use case: Small, mobile fueling stations

Types of Electrolyzers

- *Water Electrolysis* literally means splitting water using electricity
- Chemical reaction is the same across technologies, $H_2O \frac{11}{11}$
- Voltage always pulls electrons out of the anode and through an external contrared and pushes them into the stre cathode
- Difference lies in how chemicals and materials inside the cell balance **ALK Collarge prototype** carriers—ions—between the electrodes

Pro: Electrical e

Research need

Best use case:

 $\frac{1}{\frac{1}{\frac{1}{2}0}}$

Cath

 $2H_2O + 4$

Alkaline electrolyzer

For

- Oldest and most mature technology
- Stacks in MW scale
- Lower capital cost
- No precious metals

Against

- Low current density, higher footprint
- Corrosive electrolyte, hazardous operating conditions
- Limited partial load range and limited dynamic response
- Lower purity and risk of crossover
- Maintenance concerns at RE collocated remote locations

PEM electrolyzer

For

- Mature technology, has been around for decades
- MW scale stacks becoming available
- 5x to 6x current density compared to Alkaline, compact footprint
- Excellent partial load range and dynamic response
- High gas purity

All electrolyzer stacks contain oppositely charged electrodes - cathodes and anodes - as well as an electrolyte. The Plug Power electrolyzer stacks shown here use a technology called "proton exchange membrane" or PEM, which features a solid electrolyte. Photographer: Adam Glanzman/Bloomberg

Against

- Concerns about precious metals
- Higher cost than Alkaline
- Requires high purity water
- Commercialization in progress

Precious Metals – Concern or Overblown Concern?

- Current loading of Ir is 1.5 mg/cm² i.e. about 0.4 kg/MW of Electrolyzer
- Future requirement of Ir kg/MW will continue to decrease:
	- Increase in current density
	- Amount of Ir per cm² will decrease
- Recycling will reduce Ir demand significantly
- 95% recovery expected with 10 years stack life
- Impact of precious metals is overblown. Ir just adds 0.06/kg of Hydrogen produced and is expected to down to \$0.01/kg of H_2 by 2050

Source: Ir Strangelove, or How to Learn to Stop Worrying and Love the PEM Water Electrolysis, Cortney Mittelsteadt,* Esben Sorensen, and Qingying Jia <https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.energyfuels.3c01524&ref=pdf> <https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c01524?ref=pdf>

Plug Electrolyzer

Competitive Landscape

Plug 1MW PEM Electrolyzer Stack

PEM electrolyzer technology from Giner ELX acquisition

- Giner has 30+ years of experience working with the DoD and NASA to develop industry leading PEM technology
- **First PEM Gigafactory to scale** production
- **F** Technology road map will increase output of each stack up to 100%, while lowering precious metal usage by 75%+
	- **Allowing capital cost per MW to drop** ~60% in next 5 years

Plug Electrolyzer Building blocks

Solid Oxide Electrolyzer

For

- High electrical efficiency by using external heat source as additional input
- Can operate in reverse mode
- Can produce syngas
- No precious metals

Against

- Longer startup times
- Thermal integration challenges
- Concerns about life and suitability to fluctuating conditions
	- Suffer even worse than Alkaline from on-off cycling

Global Electrolyser Market

Green Hydrogen Leaders

Electrolyzer Leaders

- Siemens
- Thyssenkrupp
- Plug Power
- Cummins
- Nel
- ITM Power
- Hydrogenics
- LONGi
- Peric
- HydrogenPro
- Steisdal
- H TEC Systems
- HyAxiom
- Shanghai Electric
- Bloom Energy
- Sunfire
- Denso

Electrolyzer Start-ups

- Ohmium International
- **Electric Hydrogen**
- Hydrogen Optimized
- Hysata
- **Enapter**
- Green Hydrogen Systems
- Next Hydrogen
- **Beijing Swift New Energy**
- **Elcogen**
- **Verdagy**

Alternative Hydrogen Technologies

- Lummus Technology and Biohydrogen Technologies
- **GH Power**
- 8rivers
- **SunGas**
- Yosemite Clean Energy

Announced Electrolyser Manufacturing Capacity

All values are in ktpa (kilo tons per year)

Announced Electrolyser manufacturing capacity and capacity needed in the Net Zero Scenario, 2021-2030, IEA

- Global manufacturing capacity reached almost 11 GW per year in 2022
- Europe and China account for two-thirds of global manufacturing capacity
- Global manufacturing capacity for electrolysers could reach more than 130 GW per year by 2030
- Of all the plans by 2030, less than 10% have reached a final investment decision (FID), and 25% have been announced with an unspecified location

Electrolyzer Parameters and cost reduction opportunities

Notes: 1 TW of installed capacity by 2050 is about 1.2 TW of cumulative capacity due to lifetime and replacement. Similarly, 5 TW by 2050 is equivalent to 5.48 TW of cumulative capacity deployed.

Based on IRENA analysis.

Source: IRENA

Hydrogen Storage and Transportation

Hydrogen Storage and Transport

Transporting Hydrogen

- Pipelines
	- Pipelines are the most efficient and least costly way to transport hydrogen up to a distance of 2500 to 3000 km, for capacities around 200 kt per year
	- About 2 600 km of hydrogen pipelines are in operation in the United States and 2 000 km in Europe
	- The European Hydrogen Backbone initiative brings 32 gas infrastructure operators together aiming to establish pan-European hydrogen infrastructure
	- Staying on track with the NZE Scenario would require around 15 000 km of hydrogen pipelines (including new and repurposed pipes) by 2030
- Ships Ammonia, Methanol, LOHC
	- For long distances, shipping hydrogen and hydrogen carriers are more cost-competitive than hydrogen pipelines
	- Growing number of projects are considering the possibility of transporting ammonia
	- In the NZE Scenario, more than 15 Mt of low-emission hydrogen (in the form of hydrogen or hydrogen-based fuels) are shipped globally by 2030

• Liquid Hydrogen

- Improves volumetric density of Hydrogen by cooling to 253 deg C and transported in insulated and double hulled tanks on-road
- Well established technology, simple conversion and reconversion, already in use
- Key use case: Central production and distribution within regional geography for distributed applications such as mobility and backup power
- Compressed Gaseous Hydrogen
	- Mainly used in on-site applications to reduce volumetric storage requirements
- Carbon Certification balancing
	- Alternative to actual transportation of Hydrogen molecule, settlement through commercial arrangements, under exploration in Aviation market

Transporting Hydrogen

Hydrogen delivery costs for a simple (point-to-point) transport route, for 1 Mt of H_2 and a low and a low electricity cost scenario 2050

Clean En, Volume 7, Issue 1, February 2023, Pages 190–216, <https://doi.org/10.1093/ce/zkad021>

The content of this slide may be subject to copyright: please see the slide notes for details.

Hydrogen in Energy Systems and End Applications

Fossil Fuels vs RE and Hydrogen

 P_U

Fossil Fuels **Fossil Fuels Renewables & Green Hydrogen**

Why hydrogen?

A versatile, zero-emission, efficient energy carrier

Source: https://m.miningweekly.com/article/south -africas -potential -to -export -green -hydrogen -boosted -2020 -05 -26

1 IEA data updated due to recent developments in building numerous 1MW hydrogen storage tanks

Source: IEA Energy Technology Roadmap Hydrogen and Fuel Cells, JRC Scientific and Policy Report 2013

Simplified value chain of hydrogen-based energy conversion solutions¹

1. Simplified value chain. End uses are non-exhaustive. For more information on the technologies mentioned in this diagram, please refer to next chapter or to the Hydrogen FactBook. Source: A.T. Kearney Energy Transition Institute analysis. Hydrogen-based energy conversion

 11

Energy Process Chain of Hydrogen

Source: NREL, https://www.nrel.gov/docs/fy22osti/82554.pdf

Green Hydrogen at Work™

Hydrogen from renewables remains expensive, but costs vary widely by market

Levelized cost of hydrogen from cheapest available renewable power in 28 markets, 2022

Natural resources are the key to producing low-cost hydrogen with renewable power.

Brazil operates onshore wind projects with some of the highest capacity factors in the world. Partly as a result, it has the world's lowest potential levelized cost for zero-carbon hydrogen at \$2.01-4.05/kg. Chile, thanks to its exceptionally sunny conditions in some areas, also has the potential to produce hydrogen at relatively low cost (\$2.77-\$5.48 /kg).

The cost of the equipment used to produce hydrogen - electrolyzers - is critical in the final levelized cost of producing the fuel.

Alkaline electrolyzers manufactured in mainland China tend to have the lowest cost, while proton-exchange membrane (PEM) electrolyzers tend to be the most expensive. Equipment costs are declining, however. India has the potential to be among the lower-cost producers of zero-carbon H2.

Source: BloombergNEF. Values at the bottom show cheapest hydrogen using a Chinese alkaline electrolyzer, values atop the range show cheapest values using a proton exchange membrane electrolyzer, and black lines show cheapest values using a Western alkaline electrolyzer. Electricity source is either s or wind, whichever is cheaper. MMBtu is million British thermal units.

Green Ammonia Country Attractiveness

Source: Alvarez and Marsal analysis

Table 3: Infrastructure and other ecosystem enablers scoring

Source: Alvarez and Marsal analysis

Estimated Market Size by 2030 based on current state of Industry:

Hydrogen Production

- Around 135 projects with 6.8 GW Electrolyzer installation by 2030 estimated producing 1 MMTPA of $GH₂$
- Estimated Capex of \$9.1Bn

Equipment Export and Services

- \$34Bn equipment export potential
- \$2.1Bn Engineering Services

Total ~\$45Bn Equipment & Services opportunity

Source: IH2A

Source: Country Strategy documents, IEA project database, applying an 80% factor for actual realization of announced projects

Transporting Hydrogen

 p_Uq