

## INTRODUCTION TO GREEN HYDROGEN ECONOMY

Anuraag Nallapaneni, Manager, Hydrogen, WRI India 27<sup>th</sup> Nov 2023



## **ABOUT WRI INDIA**

WRI India is a research organization that turns big ideas into action at the nexus of environment, economic opportunity and human wellbeing

We work with governments, businesses, multilateral institutions and civil society to improve people's lives and protect nature.





## AGENDA

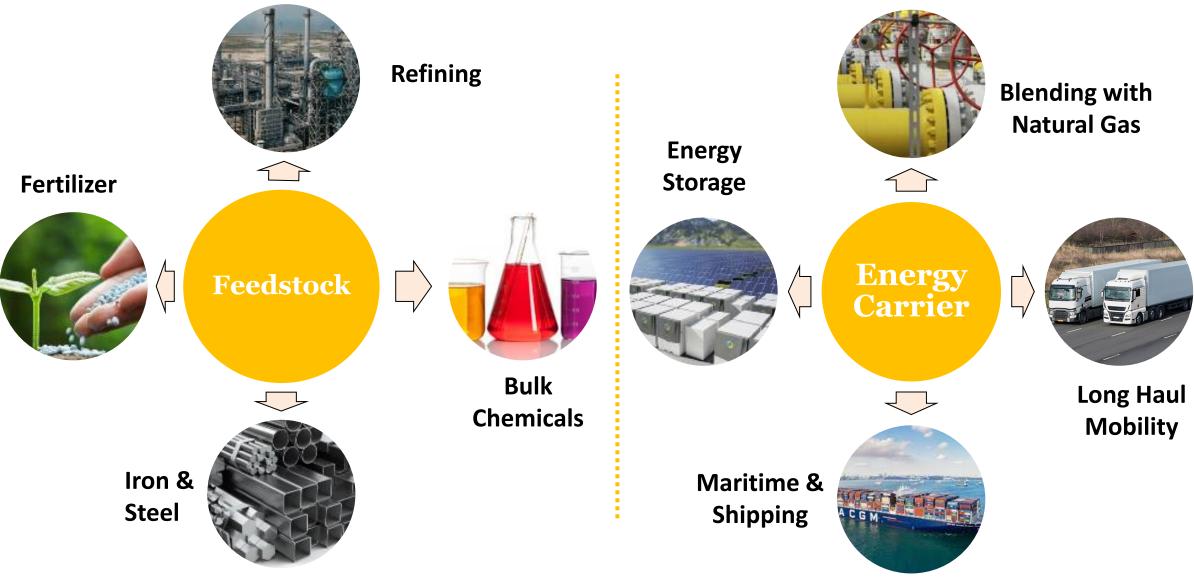
- 1. Introduction to Hydrogen
- 2. What & Why of Green Hydrogen
- 3. Green Hydrogen Technologies
- 4. Policy and Regulations for Green Hydrogen
- 5. Q&A





# INTRODUCTION TO HYDROGEN



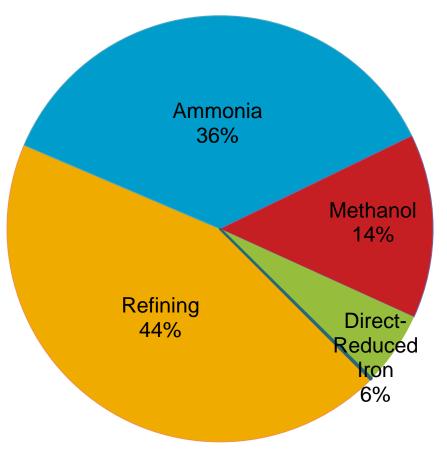

### **INTRODUCTION TO HYDROGEN**

- Hydrogen is the lightest and the most abundant element in the universe
- □ Hydrogen is colourless and odourless
- Lowest density among all gases, atomic weight of 1
- Hydrogen is only found in compound form with other elements eg: water (H<sub>2</sub>O), ammonia (NH<sub>3</sub>), methane (CH<sub>4</sub>)
- Despite its sheer abundance, hydrogen does not occur naturally as a gas

| Property                            | Hydrogen                                | Comparison          |
|-------------------------------------|-----------------------------------------|---------------------|
| Density (gaseous)                   | 0.089 kg/m <sup>3</sup> (0°C, 1 bar)    | 1/10 of natural gas |
| Density (liquid)                    | 70.79 kg/m <sup>3</sup> (-253°C, 1 bar) | 1/6 of natural gas  |
| Boiling point                       | -252.76°C (1 bar)                       | 90°C below LNG      |
| Energy per unit of mass (LHV)       | 120.1 MJ/kg                             | 3x that of gasoline |
| Energy density (ambient cond., LHV) | 0.01 MJ/L                               | 1/3 of natural gas  |
| Specific energy (liquefied, LHV)    | 8.5 MJ/L                                | 1/3 of LNG          |
| Flame velocity                      | 346 cm/s                                | 8x methane          |



#### **HYDROGEN: FEEDSTOCK & ENERGY CARRIER**






#### **SECTORAL APPLICATIONS OF HYDROGEN**

| INDUSTRY<br>Sector  | KEY APPLICATIONS                                                                                                                                   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| CHEMICAL            | • Ammonia<br>• Polymers<br>• Resins                                                                                                                |
| REFINING            | <ul> <li>Hydrocracking</li> <li>Hydrotreating</li> </ul>                                                                                           |
| IRON & STEEL        | • Annealing<br>• Blanketing gas<br>• Forming gas                                                                                                   |
| GENERAL<br>INDUSTRY | <ul> <li>Semiconductor</li> <li>Propellant fuel</li> <li>Glass production</li> <li>Hydrogenation of fats</li> <li>Cooling of generators</li> </ul> |

#### **Global Hydrogen Consumption 2020**







# WHAT & WHY OF GREEN HYDROGEN



## **COLOUR CODES OF HYDROGEN**

| Hz | H |  |
|----|---|--|
|    |   |  |

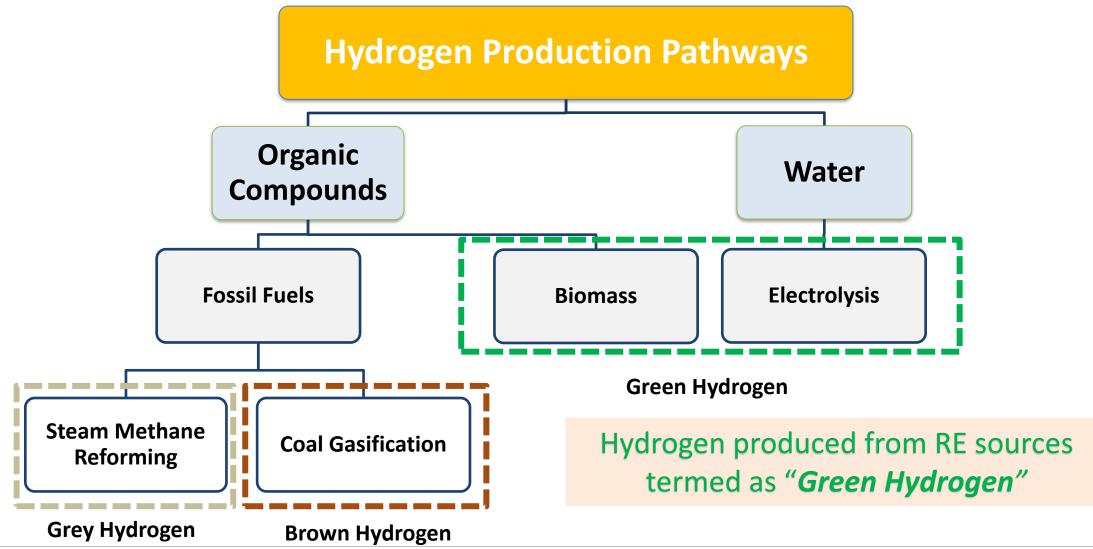
#### **Grey/Brown Hydrogen**

- □ Produced via Steam methane reformation (natural gas) or coal gasification
- $\Box$  High carbon intensity of around 9-12 kg of CO<sub>2</sub>/ kg of hydrogen.



#### Blue Hydrogen:

- Produced via Steam methane reformation or coal gasification with carbon capture & storage technologies to reduce carbon emissions.
- □ The carbon intensity is around 1-4 kg of  $CO_2$ / kg of hydrogen.



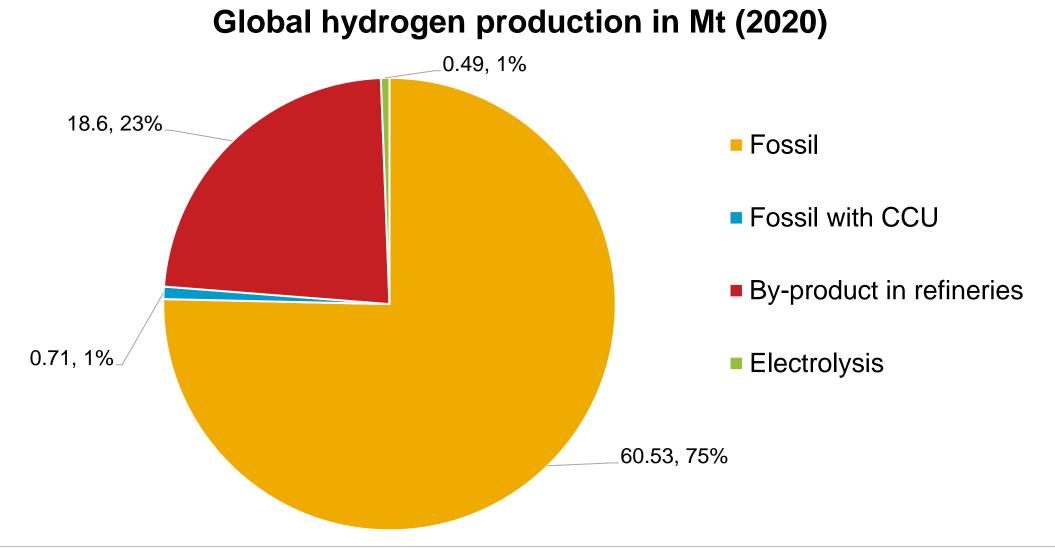

#### **Green Hydrogen**

- Produced using electrolysis of water with electricity generated by renewable energy. This is the least carbon intensive process.
- $\Box$  The carbon intensity is around 0-0.6 kg of CO<sub>2</sub>/ kg of hydrogen.



#### **HYDROGEN PRODUCTION PATHWAYS**

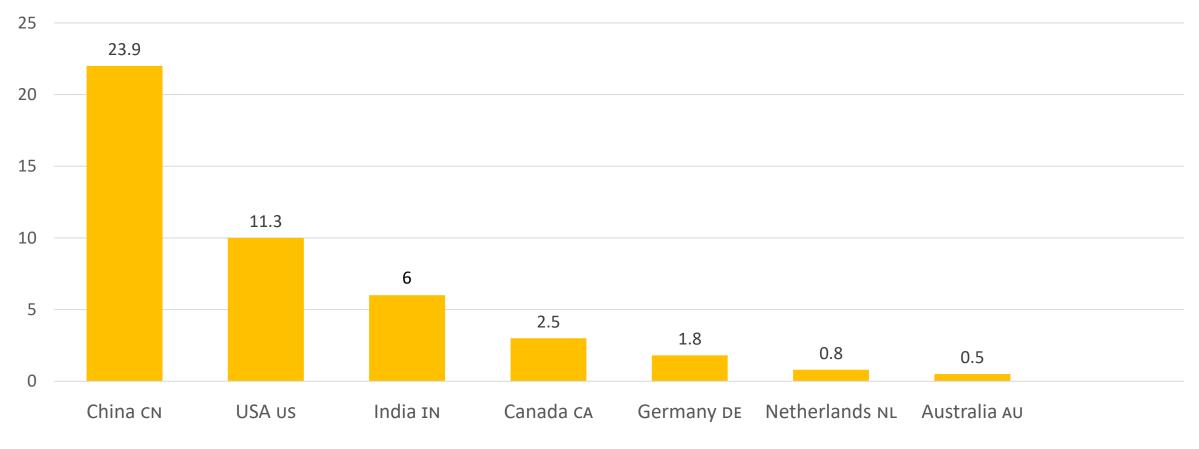





#### **EMISSION INTENSITY OF HYDROGEN PRODUCTION**

| Technology                             | Colour<br>Code | CO <sub>2</sub> footprint (kg of<br>CO <sub>2e</sub> /kg of H <sub>2</sub> ) |
|----------------------------------------|----------------|------------------------------------------------------------------------------|
| Coal Gasification                      |                | 14.7 - 26.1                                                                  |
| Steam Methane Reforming                |                | 10.1 - 17.2                                                                  |
| Methane Pyrolysis                      |                | 4.2 - 9.1                                                                    |
| Steam Methane Reforming with CCUS      |                | 2.8 - 9.1                                                                    |
| Electrolysis using Solar Electricity   |                | 1.3 - 2.5                                                                    |
| Electrolysis using Wind Electricity    |                | 0.5 - 1.1                                                                    |
| Electrolysis using Nuclear Electricity |                | 0.5 - 1.0                                                                    |




#### **HYDROGEN PRODUCTION TECHNOLOGY**





#### **GLOBAL HYDROGEN CONSUMPTION**

Hydrogen Production figures in Million Metric Tonnes (2020)



**Major Hydrogen Producing Countries** 



### WHY GREEN HYDROGEN NOW



**Climate Goals:** Hydrogen can decarbonize Hard-to-abate sectors. (Northern Horizons Project, UK: 10 GW off-shore wind for GH<sub>2</sub> at CoP26)



#### Technology development:

Increased efficiency, reliability and lower consumption of raw materials



**Cost Trends**: Economies of scale, automation, cheaper raw materials, are expected to drive cost reduction similar to solar & batteries

#### **Global Momentum for Hydrogen**

**19 countries** have released hydrogen strategies, **20 countries** publicly announced development of hydrogen strategies

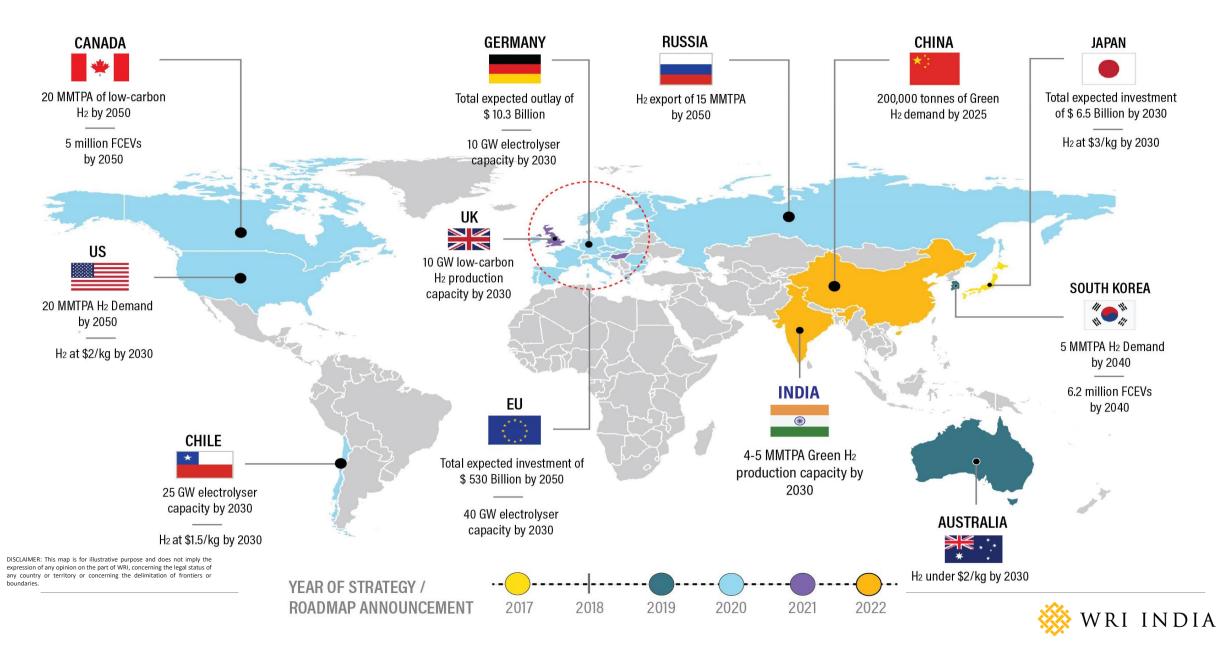


**EU**: 40 GW Electrolyser (2040), EUR 470 b investment (2050)



**USA**: 20 MMT Demand (2030), \$2/kg in 10 yrs




**China**: 100 GW Electrolyser (2030), 5 MMT demand by 2030



Japan: 1 GW Electrolyser (2030), \$20 b

investment outlay

#### **GREEN HYDROGEN- GLOBAL STRATEGY OUTLOOK**



#### WHY SHOULD NATIONS INVEST IN GREEN HYDROGEN

Energy Security

#### Decarbonisation

Hydrogen Export



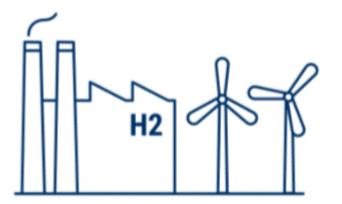




Self-reliance in hydrogen production can reduce India's energy and ammonia imports Green hydrogen can catalyse >20% emission reduction, primarily through industrial decarbonisation Driven by the abundant availability of RE, India can tap into significant green H2 export market LN pr va cr

Import of crude, LNG, and petroleum products for 2020 valued at **₹7.8 lakh** crores (\$104 billion)




Hydrogen adoption to support **India's commitments at the COP26** 





# GREEN HYDROGEN TECHNOLOGIES

## **HYDROGEN TECHNOLOGIES**



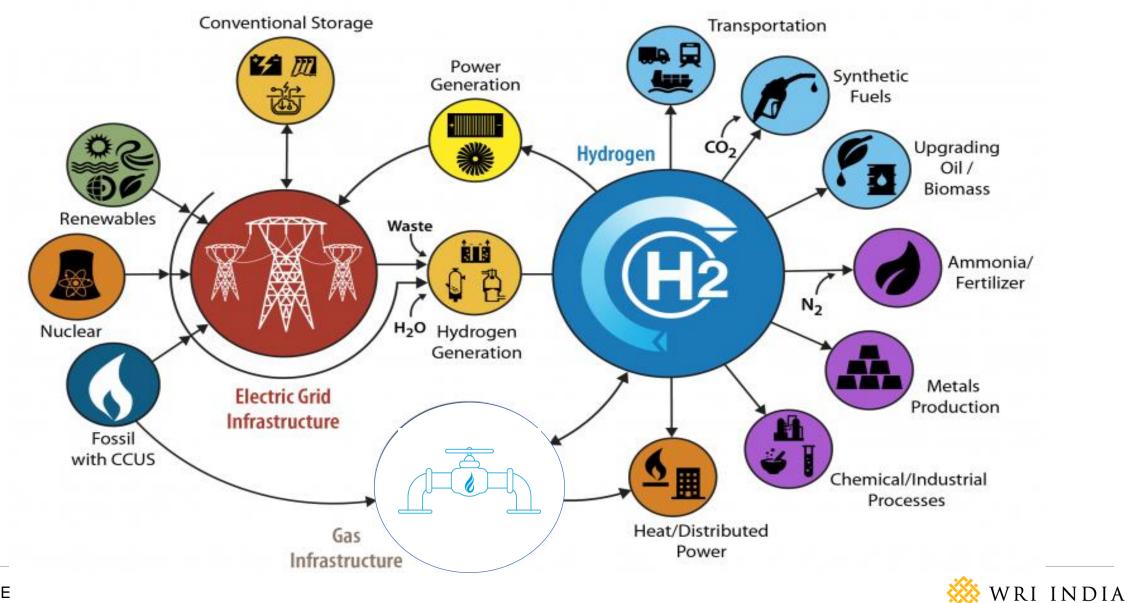
# Production & Manufacturing



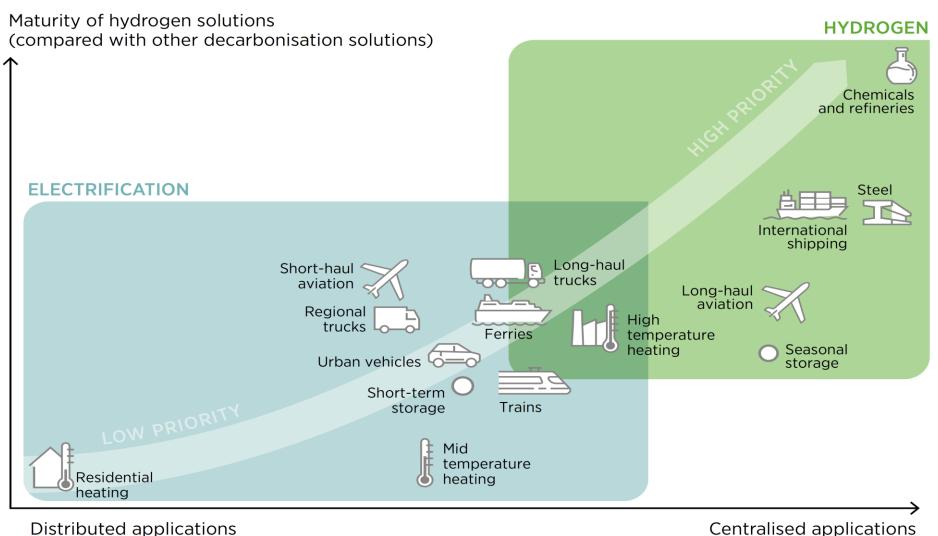
- Fuel Cells
- Bio-Hydrogen



# Transport & Storage

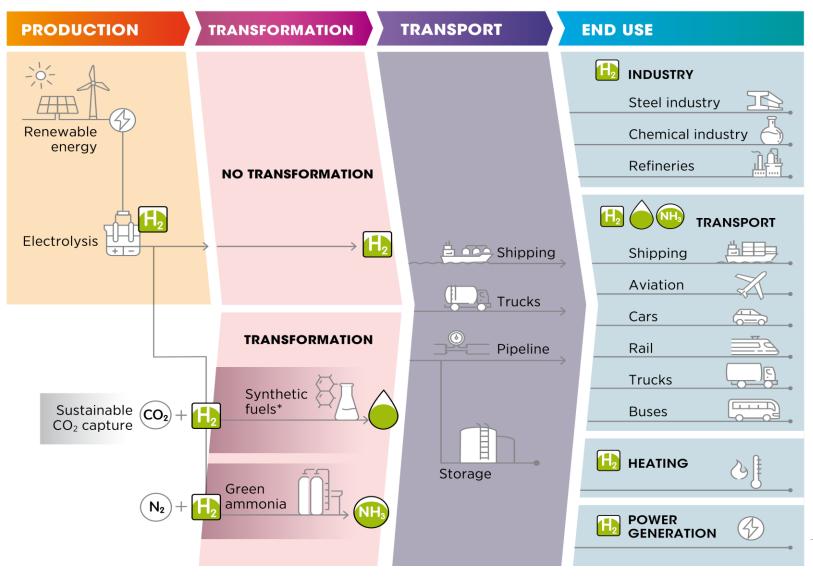

- Pipelines & Bunkers
- Bulk Transport
- Transformation

# Utilization & Applications


- □ Hydrogen Derivatives
- □ Fuel for Energy
- Industrial Feedstock

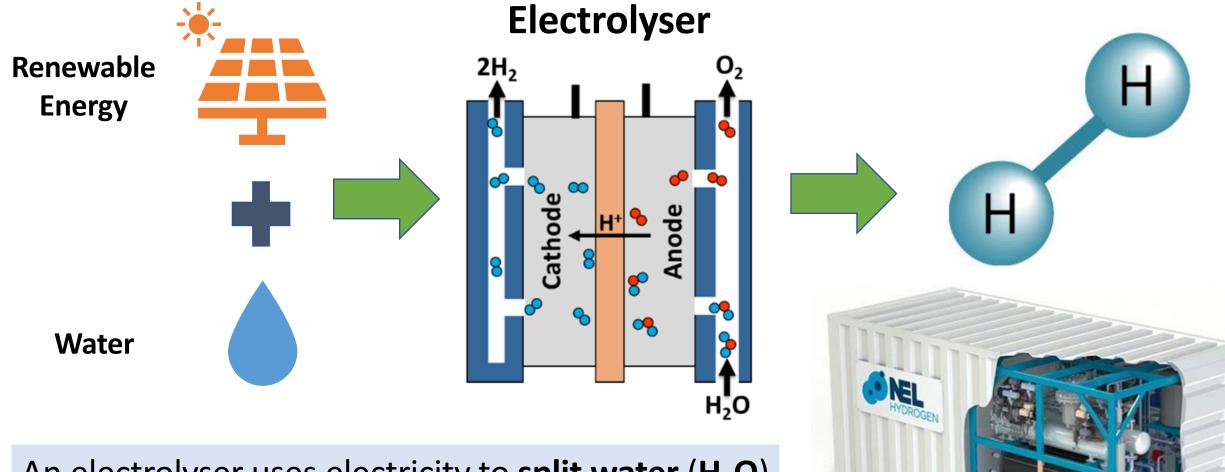


### **HYDROGEN VALUE CHAIN**




### **GREEN HYDROGEN- APPLICATIONS**






### **GREEN HYDROGEN- A POTENTIAL PATHWAY FOR DECARBONIZATION**





#### **GREEN HYDROGEN PRODUCTION**



An electrolyser uses electricity to **split water**  $(H_2O)$ into its constituent molecules (ie:  $H_2$  and  $O_2$ )

### **ELECTROLYSER REQUIREMENTS**

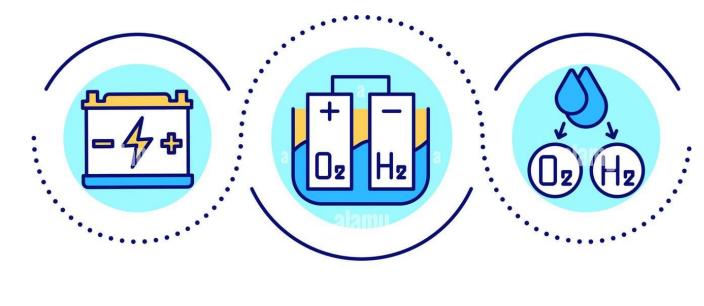
#### Electrodes

Electrode in an electric conductor which provides the physical interface between the electric circuit providing the energy and the electrolyte

#### Electrolyte

A substance containing free ions which are the carrier of electric current in the electrolyte Key Requirements

DI Water

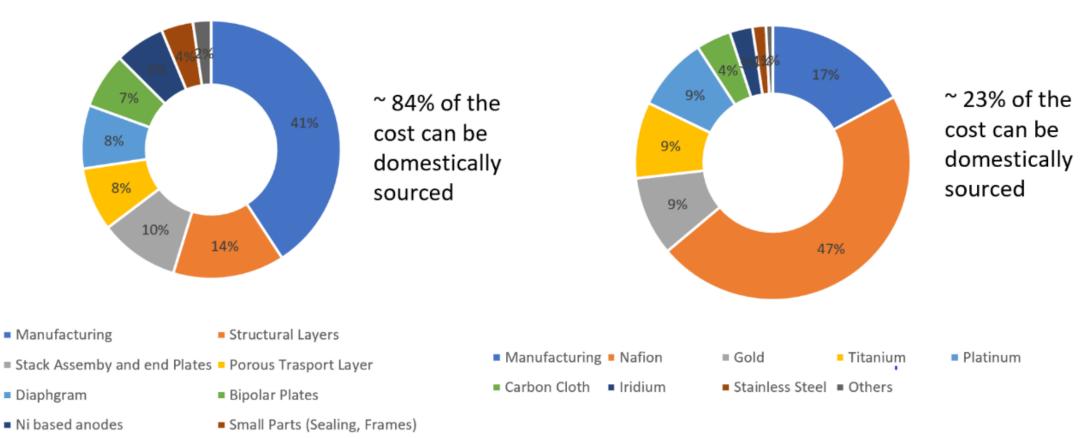

Renewable Energy



#### **ELECTROLYSER TECHNOLOGIES**

#### **Technologies**

- Alkaline WaterElectrolysis
- PEM Electrolysis
- Solid Oxide Electrolysis
- Anion Exchange
   Membrane Electrolysis








#### **COMPONENT LEVEL BREAK-UP FOR ELECTROLYSER**

#### Alkaline electrolyser



#### PEM electrolyser

Ni based Cathodes



### **COMPARISION OF DIFFERENT TECHNOLOGIES**

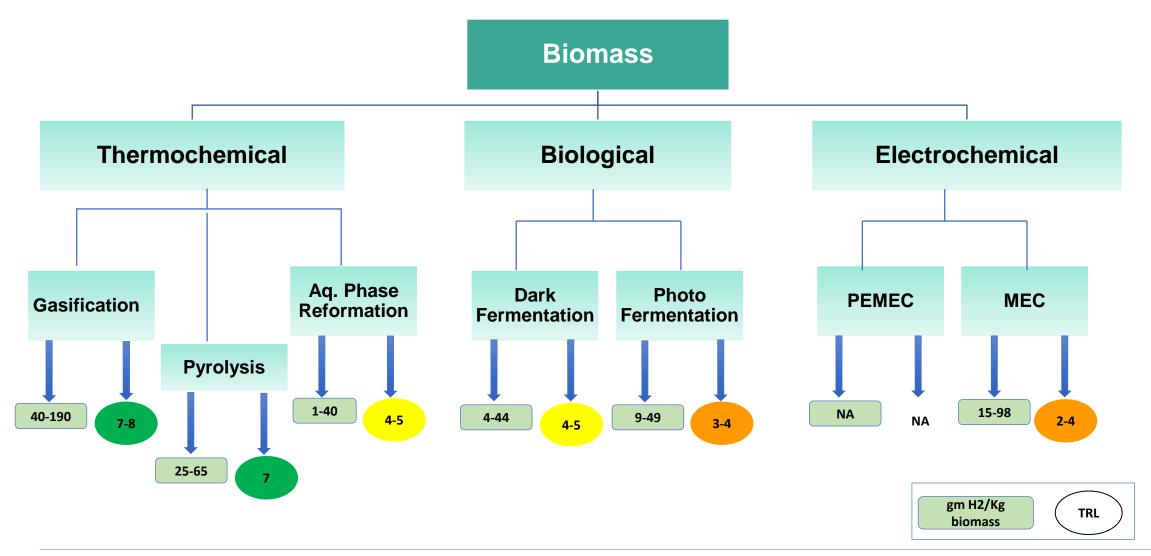
| Sr. No. | Characteristics                          | Alkaline      | PEM           | SOEC          |
|---------|------------------------------------------|---------------|---------------|---------------|
| 1       | Electrical efficiency<br>(%LHV)          | 63-70         | 56-60         | 74-81         |
| 2       | Operating pressure (bar)                 | 1-30          | 30-80         | 1             |
| 3       | Operating temperature (°C)               | 60-80         | 50-80         | 650-1000      |
| 4       | Stack life (operating hours)             | 60,000-90,000 | 30,000-90,000 | 10,000-30,000 |
| 5       | Load range (%, relative to nominal load) | 10-110        | 0-160         | 20-100        |
| 6       | Plant footprint (m <sup>2</sup> /kWe)    | 0.095         | 0.048         | -             |
| 7       | CAPEX (USD/kWe)                          | 500-1400      | 1100-1800     | 2800-5600     |




### **SUMMARY OF DIFFERENT TECHNOLOGIES**

| Electrolyser<br>Technology |                                                                                                                                                                                                                           |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alkaline                   | <ul> <li>Alkaline water electrolysis is mature and most widely used technology.</li> <li>Alkaline water electrolyser lifetime is higher and the annual maintenance costs are lower compared to PEM.</li> </ul>            |
| PEM                        | <ul> <li>High current density and compact &amp; can achieve high pressures.</li> <li>Preferred where dynamic operation is required, due to short start-up time and it provides a broad load flexibility range.</li> </ul> |
| SOEC                       | <ul> <li>Solid oxide electrolysis is high temperature electrolysis and having high<br/>efficiency and interchangeable operation.</li> </ul>                                                                               |
| AEM                        | <ul> <li>Cost effective materials for construction of system</li> <li>Chemical and mechanical stability of membrane, unstable operation<br/>and reduced lifetime.</li> </ul>                                              |




#### **ANNOUNCED ELECTROLYSER CAPACITY** TARGETS



#### **Electrolyser Capacity Targets by 2030 (GW)**



### **BIOMASS TECHNOLOGIES**





## **BIOMASS GASIFICATION**

#### **Air Gasification**

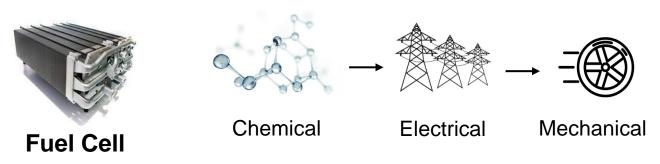
- ✤ Max. 60 g/ kg of biomass achievable
- Typical yield of 35-40 g/ kg of biomass
- Typical composition of producer gas (H2-20%, CO – 20%, CO2- 12%, CH4 – 3%, N2 – 45% by volume)

#### **Oxygen Gasification**

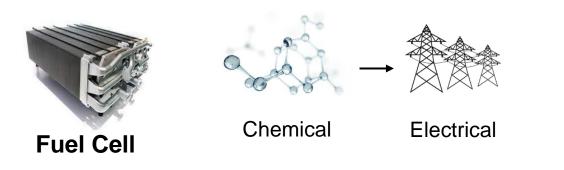
Using oxygen to increase H2 volume fraction by eliminating N2

Water gas : C + H<sub>2</sub>O  $\longrightarrow$  H<sub>2</sub> + CO - 131,400 kJ Water shift : CO + H<sub>2</sub>O  $\longrightarrow$  H<sub>2</sub> + CO<sub>2</sub> + 41,200 kJ

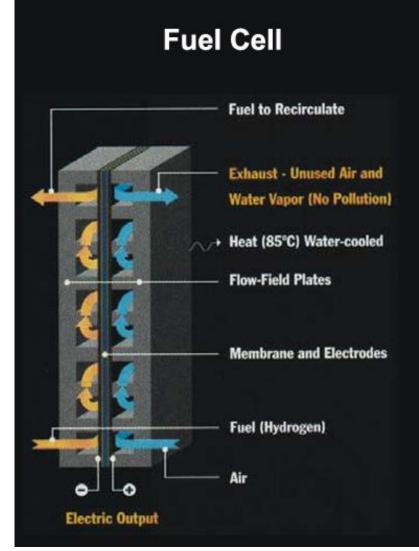
#### **Steam Gasification**


 Using steam to increase H2 yield using C & CO through water gas reaction and water shift reaction

#### **Oxy- steam Gasification**


- Using steam & oxygen to increase H2 yield
- This yields 66 104 g / kg of biomass using excess steam as a reactant which depends on the H<sub>2</sub>O/Biomass ratio.




## **FUEL CELL BASICS**



Energy conversion in fuel cell for mechanical output



Energy conversion in fuel cell for electrical output



General structure of a fuel cell



## **FUEL CELL HIGHLIGHT**

| Principles                            | Features                                                                                    |
|---------------------------------------|---------------------------------------------------------------------------------------------|
| Electrochemical energy conversion     | <ul><li>✓ High efficiency and energy density</li><li>✓ Elimination of noise</li></ul>       |
| Fewer energy transformation           | <ul> <li>✓ High and consistent efficiency</li> <li>✓ Prompt load-following</li> </ul>       |
| Operates best on Pure Hydrogen        | <ul> <li>✓ Emissions elimination</li> <li>✓ Integration with renewables possible</li> </ul> |
| Runs as long as fuel is supplied      | <ul><li>✓ Long operational cycles</li><li>✓ High energy density</li></ul>                   |
| Expansion by addition of stacks       | <ul><li>✓ Modularity</li><li>✓ Favourable integration with renewables</li></ul>             |
| Static operation and no dynamic parts | <ul><li>✓ Reduced noise</li><li>✓ Modularity</li></ul>                                      |



## **FUEL CELL APPLICATIONS**

#### Portable Application



- Portable Power Generator
- Consumer Electronics
- Portable Military Equipment
- Battery Chargers
- Miniature Gadgets

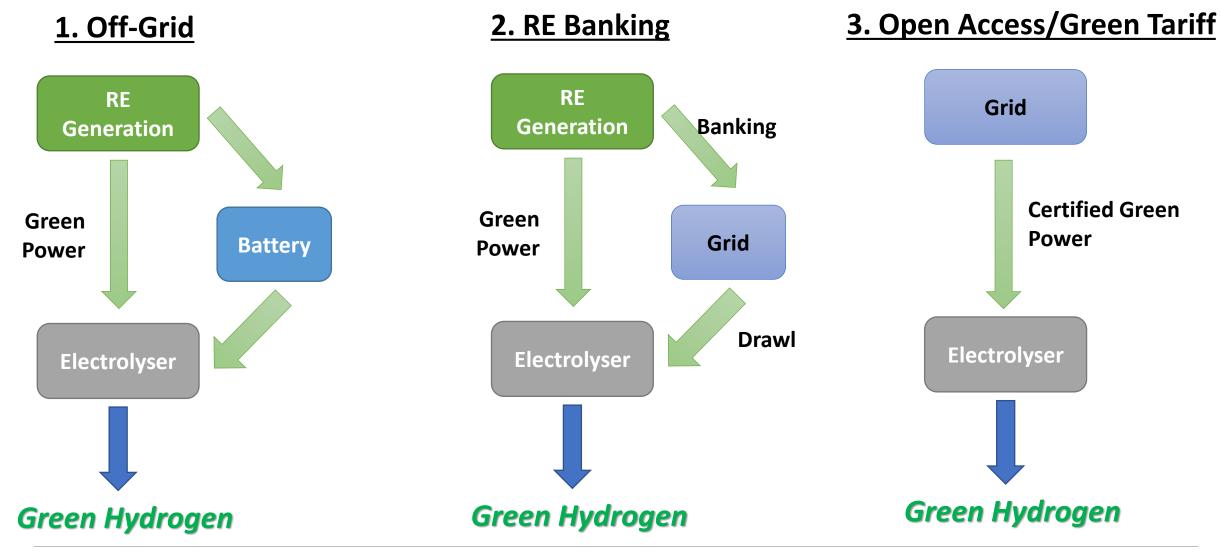




Stationary Application

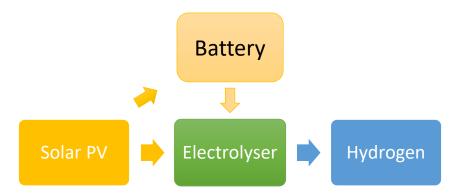


- Light traction vehicles
- Heavy Fuel Cell Vehicles
- Buses and trains
- Propulsion systems
- Military Submarines
- Boats and plane

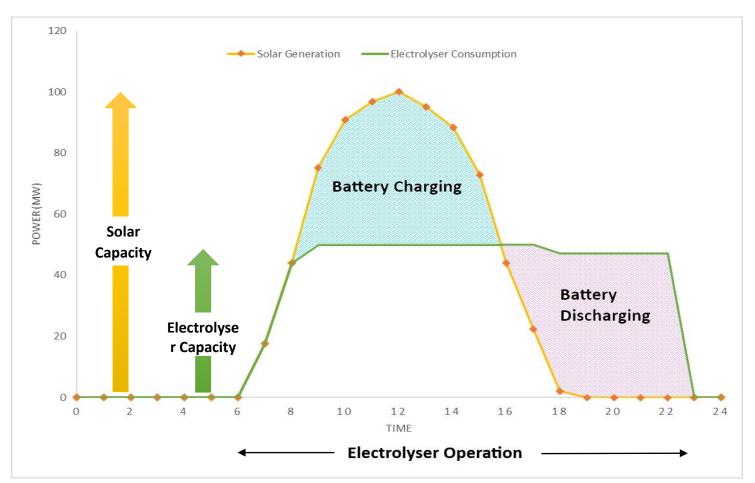

- Distributed Power Generation
- Combined Heat and Power
- Combined cooling and heat
- Back-up supply
- Distributed Generation





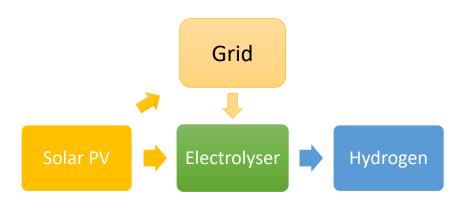

# GREEN HYDROGEN PRODUCTION MODES

### **GREEN HYDROGEN PRODUCTION MODES**

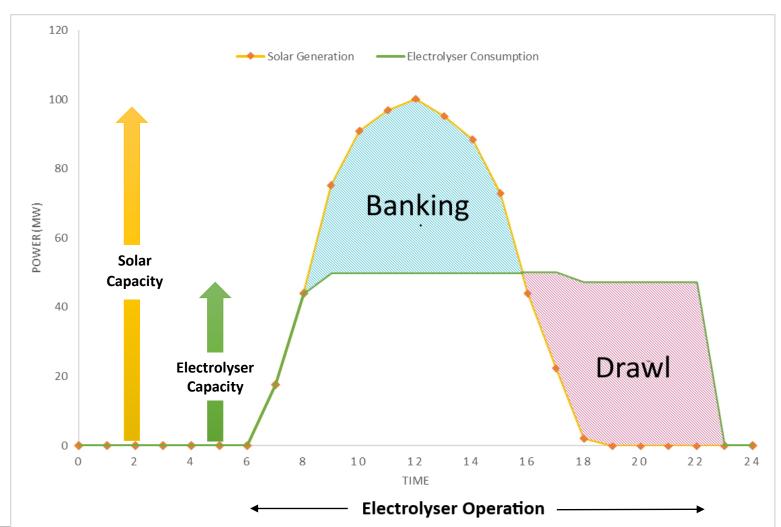





### **ELECTROLYSIS: OFF-GRID MODE**




- Cost of Battery Storage will increase cost of green Hydrogen production.
- Optimal balance would be needed between Electrolyser
   CUF and Battery Storage
   Capacity

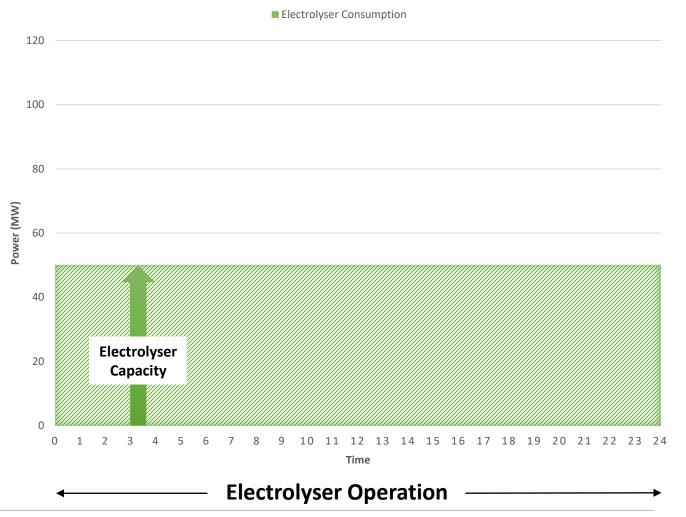





# **ELECTROLYSIS: GRID WITH BANKING**



- RE banking is becoming more restrictive across states and also prohibited in many states
- Power generation assets on stand-by for off-peak generation






# **ELECTROLYSIS: 24X7 GREEN POWER**



- Accounting for green power might not be accepted across all nations
- Regulations on definition of green power need to be standardized





# **CHALLENGES WITH HYDROGEN**

### Transport, Storage & Handling

#### □ Weight and Volume

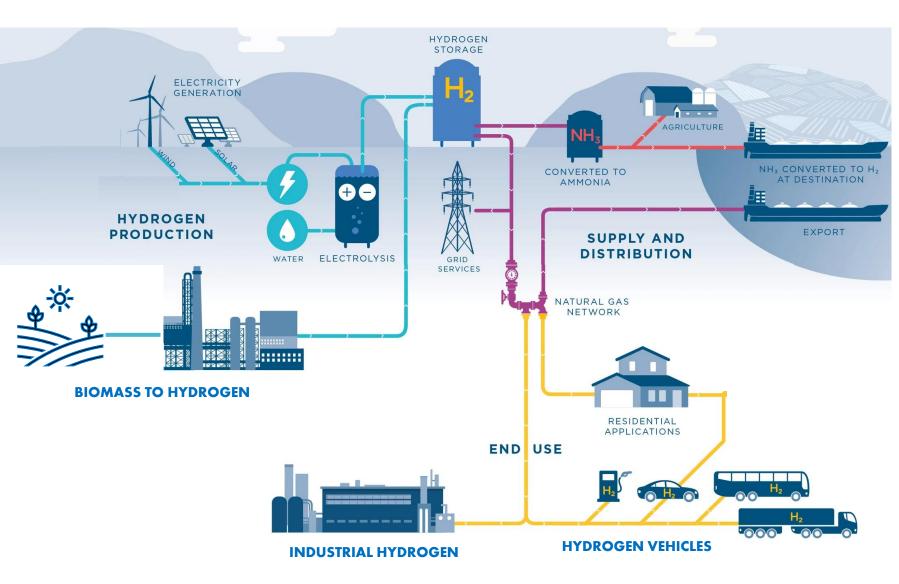
 Weight and volume of hydrogen storage systems are presently too high. Cylinder type rating are complex, hence costs are also high

#### **Efficiency (round trip conversion, compression)**

- Life-cycle energy efficiency is a challenge for chemical hydride storage in which the byproduct is regenerated off-board
- Compression for achieving desired energy density can add upto 10%-30% additional energy costs

#### □ Material Durability

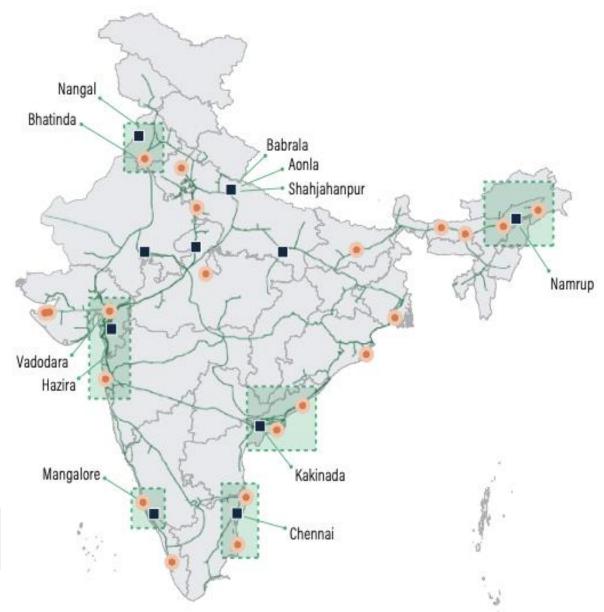
 Materials and components need to withstand the highly corrosive nature of hydrogen over repeated cycles


#### Codes and Standards

• Standardized hardware and operating procedures, and applicable codes and standards, are required



### POTENTIAL HYDROGEN HUB


- □ Co-located production and consumption of GH<sub>2</sub>
- Potential Hub Locations
   include Hazira, Gujarat &
   Vishakhapatnam, Andhra
   Pradesh
- Trunk Infrastructure to be supported which can inc.
  - ✓ Access to RE Power
  - ✓ Hydrogen Storage
  - ✓ Supply and Distribution
     Network



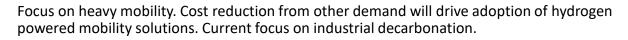
# **CO-LOCATING HYDROGEN SUPPLY WITH DEMAND**

**RE + Electrolysers + Demand** Α. Grid Based RE + (Electrolysers + Demand) Β. C. (RE + Electrolysers) + H2 Transport + Demand Renewable Hydrogen **Applications (3)** Energy (1) **Production (2)** Solar + Wind + Biomass Electrolysis Industry + Power + Mobility Electricity Grid 賽

Hydrogen produced through electrolysis must be co-located with demand centres to eliminate high transport costs






# GLOBAL POLICY PERSPECTIVE

# **GLOBAL SECTORAL FOCUS**

|                                            | Power<br>Generation | Heating<br>Application | Industry                |                       |              | Transport       |              |                 |                 |                 |                          |
|--------------------------------------------|---------------------|------------------------|-------------------------|-----------------------|--------------|-----------------|--------------|-----------------|-----------------|-----------------|--------------------------|
| Country                                    |                     |                        | Iron &<br>Steel         | Chemical<br>Feedstock | Refining     | Cars            | Trucks       | Buses           | Rail            | Maritime        | Aviation                 |
| European<br>Union                          | X                   | X                      |                         | 4                     | 47           | $\underline{X}$ | 47           | 47              | 47              |                 |                          |
| Australia                                  | 47                  | X                      |                         | 4                     | $\Diamond$   | $\underline{X}$ | 4            | 47              | 4               |                 | $\square$                |
| Germany                                    | $\underline{X}$     | $\mathbf{O}$           | 4                       | 4                     | 47           | $\underline{X}$ | 4            | 4               | $\underline{X}$ |                 |                          |
| Japan                                      | 4                   | 4                      | $\underline{X}$         | $\underline{X}$       | $\mathbf{X}$ | 4               | 4            |                 | $\underline{X}$ | $\underline{X}$ | $\square$                |
| South Korea                                | $\underline{X}$     | 47                     | $\overline{\mathbf{X}}$ | $\mathbf{O}$          | $\mathbf{O}$ | 4               | 4            | 4               | $\underline{X}$ | $\underline{X}$ | $\mathbf{O}$             |
| Canada                                     | 4                   | $\mathbf{X}$           | 4                       | 4                     | 4            |                 | 4            | 4               |                 |                 |                          |
| Norway                                     | $\underline{X}$     | $\mathbf{O}$           | $\square$               | 4                     | $\square$    | $\underline{X}$ | $\mathbf{X}$ | $\underline{X}$ | $\mathbf{O}$    | 4               | $\square$                |
| Portugal                                   | 4                   | $\mathbf{X}$           | 4                       | 4                     | 47           |                 | 4            | 4               | 4               |                 |                          |
| Netherlands                                | 47                  | $\mathbf{X}$           | 4                       | 4                     | 4            |                 | 4            | 4               | 4               | $\underline{X}$ | $\square$                |
| Chile                                      | 47                  | $\otimes$              | $\mathbf{O}$            | 4                     | 4            | $\mathbf{O}$    | 4            | 4               | $\mathbf{O}$    |                 |                          |
| France                                     | X                   | $\bigotimes$           | 4                       | 4                     | 4            |                 | 4            | 4               | $\underline{X}$ | $\square$       | $\underline{\mathbb{X}}$ |
| 🚫 Absent 🗳 Aggressive 🔳 Long - term 🔀 Slow |                     |                        |                         |                       |              |                 |              |                 |                 |                 |                          |

### Factors Affecting Sectoral Preferences

- RE integration,
- Cost and ease of adoption,
- Need for diversification of energy systems,
- Ensuring geopolitical dominance,
- Sectoral decarbonisation targets





### Legislative commitments and relevance

| Countries    | Strategy in<br>Discussion | Roadmap<br>Present | Strategy<br>Present | Strategy +<br>Legislative<br>Framework | Legislative support                                                                             |                                                  |  |  |  |  |
|--------------|---------------------------|--------------------|---------------------|----------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| USA          |                           |                    |                     |                                        | Energy Policy Act 2005 & Hydrogen for Ports Act of 2021                                         |                                                  |  |  |  |  |
| China        |                           |                    |                     |                                        | 14th Five Year Plan (2021-2025) to embedd hydorgen in                                           | ndustry                                          |  |  |  |  |
| EU           |                           |                    |                     |                                        | Fit for 55 Hydrogen Directive (2021) and Renewable Ene                                          | ergy Directive (RED II)                          |  |  |  |  |
| Australia    |                           |                    |                     |                                        | Energy Legislation Amendment Bill 2021                                                          |                                                  |  |  |  |  |
| Germany      |                           |                    |                     |                                        | Energy Act (2021 amd.), Climate Change Act (2021 amd.) and Federal Immission Control Act (2000) |                                                  |  |  |  |  |
| Japan        |                           |                    |                     |                                        | Gas Business Act (1954) and High-Pressure Gas Safety Law (1996 amd.)                            |                                                  |  |  |  |  |
| Canada       |                           |                    |                     |                                        | -                                                                                               |                                                  |  |  |  |  |
| South Korea  |                           |                    |                     |                                        | Hydorgen Law (2021) and Renewable Energy Act (2017 amd.)                                        |                                                  |  |  |  |  |
| New Zealand  |                           |                    |                     |                                        | Gas Act (1992) and Resource Management Act (Review expected)                                    |                                                  |  |  |  |  |
| Norway       |                           |                    |                     |                                        | -                                                                                               |                                                  |  |  |  |  |
| Portugal     |                           |                    |                     |                                        | Energy Bill                                                                                     |                                                  |  |  |  |  |
| Netherlands  |                           |                    |                     |                                        | Gas Act and Electricity Act 1998                                                                | Strategies in Discussion                         |  |  |  |  |
| UK           |                           |                    |                     |                                        | Gas Act 1986, Electricity Act 1989 and Energy Act 2013                                          | Hydrogen Roadmaps and Programmes Present         |  |  |  |  |
| Chile        |                           |                    |                     |                                        | Define hydrogen in Law DFL 1 1979 and Law DL 2.224                                              | National Hydrogen Strategy Present               |  |  |  |  |
| France       |                           |                    |                     |                                        | Law-Decree No 2021-167 in Journal Officiel                                                      | Strategies Supported with legislative frameworks |  |  |  |  |
| Spain        |                           |                    |                     |                                        | -                                                                                               |                                                  |  |  |  |  |
| Italy        |                           |                    |                     |                                        | -                                                                                               |                                                  |  |  |  |  |
| India        |                           |                    |                     |                                        | Oilfields (Regulation & Development) Act, 1948, Energy (                                        | Convervatiion Act, 2001                          |  |  |  |  |
| Finland      |                           |                    |                     |                                        | -                                                                                               |                                                  |  |  |  |  |
| Russia       |                           |                    |                     |                                        | Federal Law on Gas Supply No. 69-FZ (1999) and Gas                                              | Exports No. 117-FZ (2006)                        |  |  |  |  |
| Saudi Arabia |                           |                    |                     |                                        | Federal Law No 14 (2017) and The Basic Law of Saudi Arabia (1992)                               |                                                  |  |  |  |  |



### **COLOR CODE TRANSITION ANALYSIS**

| GEOGRAPHY   | HYDROGEN PRODUCTION PATHWAYS | GEOGRAPHY | HYDROGEN PRODUCTION PATHWAYS |
|-------------|------------------------------|-----------|------------------------------|
| Japan       |                              | Canada    |                              |
| South Korea |                              | India     |                              |
| Australia   |                              | China     |                              |
| New Zealand |                              | UK        |                              |
| Norway      |                              | USA       |                              |
| Germany     |                              | France    |                              |
| Portugal    |                              | EU        |                              |
| Netherlands |                              | Chile     |                              |

| Color | Feedstock                                                 |  |  |  |  |  |
|-------|-----------------------------------------------------------|--|--|--|--|--|
|       | Grey: Natural gas reforming without CCUS                  |  |  |  |  |  |
|       | Green: Electrolysis powered through renewable electricity |  |  |  |  |  |
|       | Blue: Natural gas reforming with CCUS                     |  |  |  |  |  |
| •*    | Brown: Brown coal (lignite) as feedstock                  |  |  |  |  |  |

\* Adoption of brown hydrogen is being considered to meet the additional projected demand



### **SECTORAL FOCUS**

|                                            | Power<br>Generation | Heating<br>Application | Industry                |                       |              | Transport       |                 |                 |                          |                 |              |
|--------------------------------------------|---------------------|------------------------|-------------------------|-----------------------|--------------|-----------------|-----------------|-----------------|--------------------------|-----------------|--------------|
| Country                                    |                     |                        | Iron &<br>Steel         | Chemical<br>Feedstock | Refining     | Cars            | Trucks          | Buses           | Rail                     | Maritime        | Aviation     |
| European<br>Union                          | X                   | X                      |                         | 4                     | 4            | X               | 47              | 4               | 47                       |                 |              |
| Australia                                  | 4                   | $\underline{X}$        |                         | 4                     | $\Diamond$   | $\underline{X}$ | 4               | 47              | 4                        |                 | $\square$    |
| Germany                                    | $\underline{X}$     | $\mathbf{O}$           | 4                       | 4                     | 4            | $\underline{X}$ | 4               | 4               | $\underline{X}$          |                 |              |
| Japan                                      | 4                   | 4                      | $\underline{X}$         | $\underline{X}$       | $\mathbf{X}$ | 4               | 4               |                 | $\underline{X}$          | $\underline{X}$ | $\square$    |
| South Korea                                | $\underline{X}$     | 4                      | $\overline{\mathbf{X}}$ | $\mathbf{O}$          | $\Diamond$   | 4               | 4               | 4               | $\underline{X}$          | $\underline{X}$ | $\mathbf{O}$ |
| Canada                                     | 4                   | $\mathbf{X}$           | 4                       | 4                     | 4            |                 | 4               | 4               |                          |                 |              |
| Norway                                     | $\underline{X}$     | $\mathbf{O}$           | $\mathbf{X}$            | 4                     | $\square$    | $\underline{X}$ | $\underline{X}$ | $\underline{X}$ | $\mathbf{O}$             | 4               | $\square$    |
| Portugal                                   | 4                   | $\square$              | 4                       | 4                     | 4            |                 | 4               | 4               | 4                        |                 |              |
| Netherlands                                | 47                  | $\mathbf{X}$           | 4                       | 4                     | 4            |                 | 4               | 4               | 4                        | $\underline{X}$ | $\square$    |
| Chile                                      | 4                   | $\mathbf{O}$           | $\mathbf{O}$            | 4                     | 4            | $\mathbf{O}$    | 4               | 4               | $\mathbf{O}$             |                 |              |
| France                                     | $\underline{X}$     | $\mathbf{O}$           | 4                       | 4                     | 47           |                 | 4               | 4               | $\underline{\mathbb{X}}$ | $\square$       | $\mathbf{X}$ |
| 🚫 Absent 🗳 Aggressive 🖩 Long - term 🔀 Slow |                     |                        |                         |                       |              |                 |                 |                 |                          |                 |              |

### Factors Affecting Sectoral Preferences

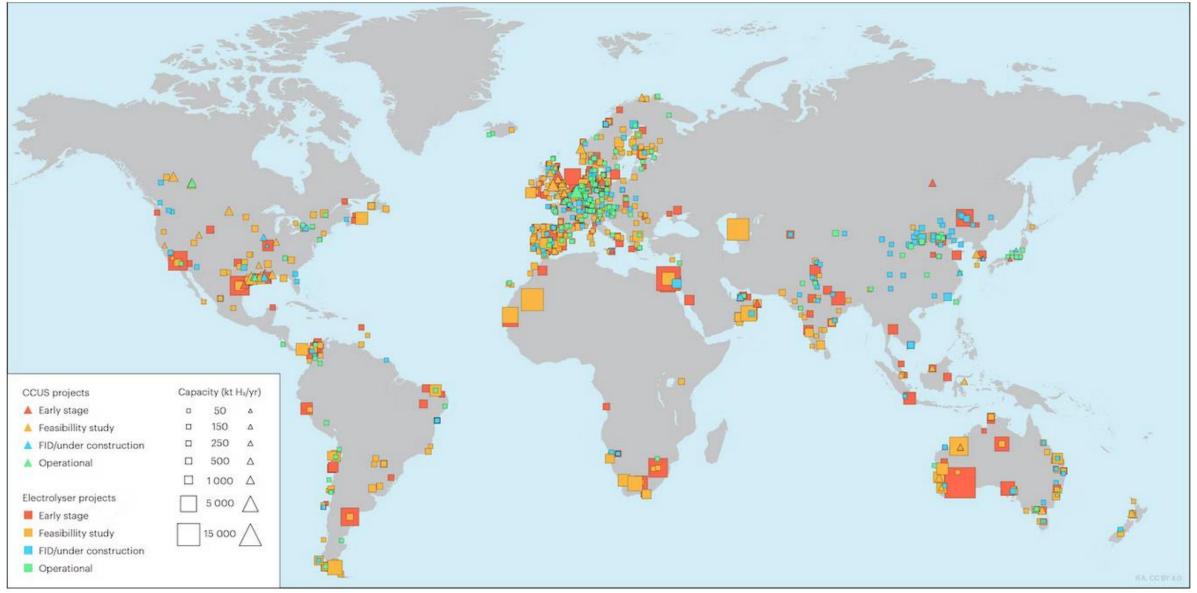
- RE integration,
- Cost and ease of adoption,
- Need for diversification of energy systems,
- Ensuring geopolitical dominance,
- Sectoral decarbonisation targets



Focus on heavy mobility. Cost reduction from other demand will drive adoption of hydrogen powered mobility solutions. Current focus on industrial decarbonation.

### **VALUE CHAIN FOCUS**

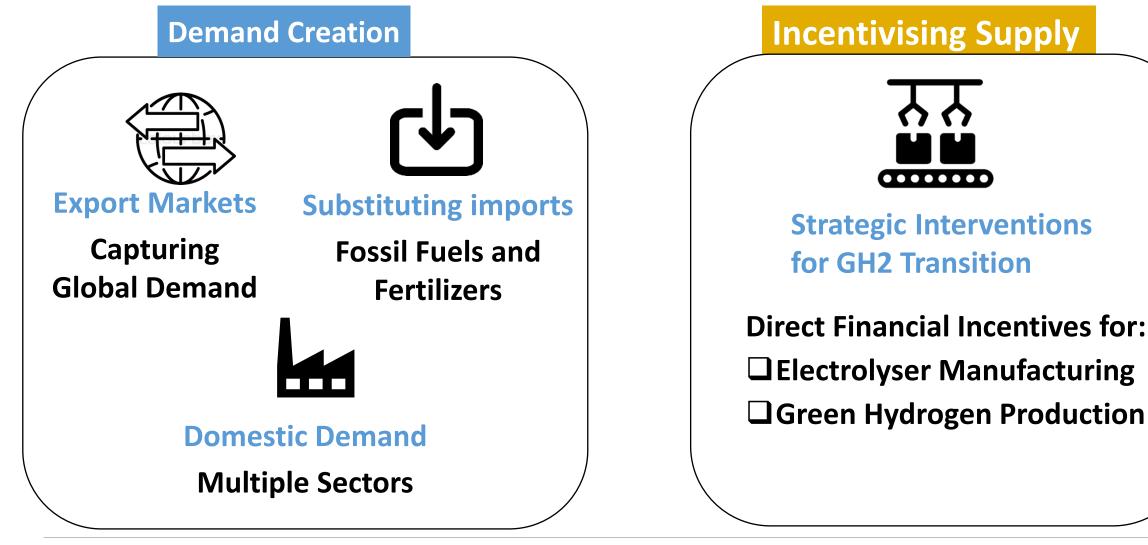
| Germany     |                  | (10)                             |             |             | 2007<br>2007 | Ŕ |                            |
|-------------|------------------|----------------------------------|-------------|-------------|--------------|---|----------------------------|
| EU          |                  | (10)<br>(10)                     |             |             | 2007<br>2007 | Ŕ |                            |
| Norway      |                  | (10)<br>(1                       |             |             | Lôy<br>L     | Ŕ | Production                 |
| USA         |                  | (H2)                             | Hz          | TOT<br>EIII | Ŕ            | · | Hz                         |
| Japan       |                  |                                  | Hz          | Tôt<br>E    | <b>\$</b>    |   | Supply/Transport           |
| UK          |                  | (12)                             |             | H2          | <b>\$</b>    |   | ╓┻┷┺                       |
| China       |                  | HzJ                              | L & L       | <b>\$</b>   |              |   | H <sub>2</sub>             |
| South Korea | Hz<br><b>H</b> = |                                  | <b>F</b> Ø7 | Ŕ           |              |   | Storage                    |
| New Zealand |                  |                                  |             | Hz          |              |   |                            |
| Netherland  |                  | (10)<br>(1                       |             |             |              |   | Domestic                   |
| Portugal    |                  | (H2)                             | Ē           |             |              |   | Application                |
| France      |                  | (1)<br>(1)                       | HzJ         |             |              |   | TOT<br>A X A<br>EEEE       |
| Italy       |                  | (12)<br>(12)                     |             |             |              |   | Component<br>Manufacturing |
| India       |                  |                                  |             |             |              |   | <b>0</b>                   |
| Chile       |                  | (H2)<br>( <b>1</b> - <b>(-</b> ) |             |             |              |   | Research and               |
| Canada      |                  | Hz                               |             |             |              |   | Development                |
| Australia   |                  | (H2)<br>(H2)                     |             |             |              |   |                            |


• •

- Value chain focus looks • from a **supply side** perspective as opposed to demand
- Almost all countries focussing on production and supply of hydrogen
- Countries with a focus on R&D and component manufacturing the most active in the global hydrogen ecosystem development.



Importance of R&D to be discussed and how R&D facilitates entire value chain development


# **ANNOUNCED GREEN HYDROGEN PROJECTS**



Source: IEA (2023); https://www.iea.org/reports/global-hydrogen-review-2023/executive-summary



# **NATIONAL GREEN HYDROGEN MISSION (1/2)**





# NATIONAL GREEN HYDROGEN MISSION (2/2)

### **Key Enablers**



#### Resources

Renewable energy banking & storage, transmission, finance, land, water



#### R&D

Result oriented, timebound, including through PPP, grand challenges



#### Ease of doing business

Simpler procedures, taxation, SEZ, commercial issues, single window



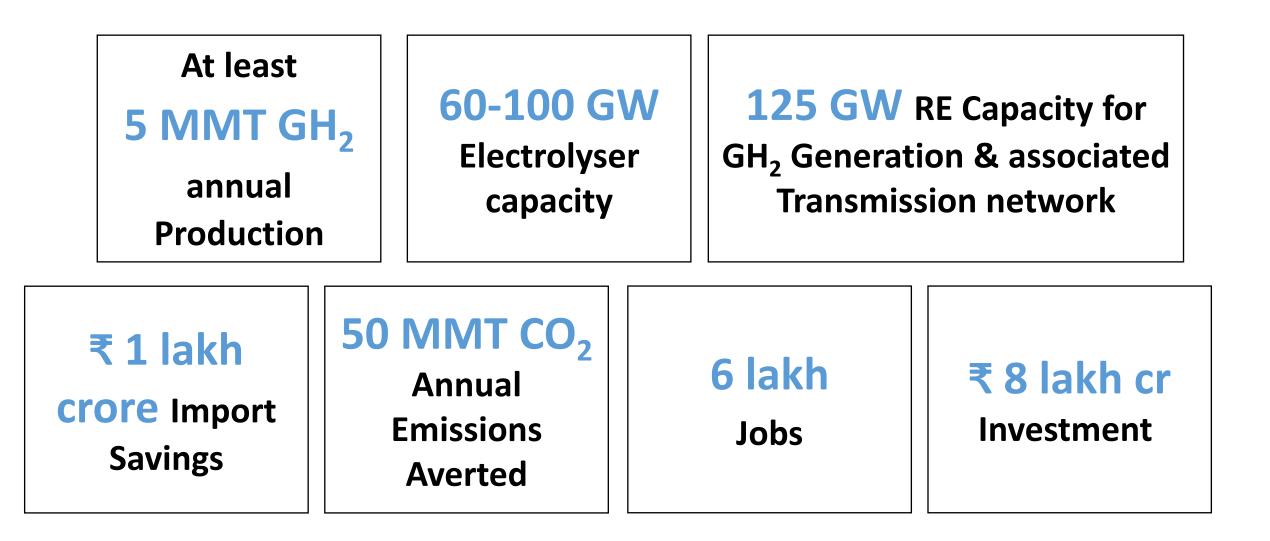
Infrastructure & Supply Chain

Ports, Re-fueling, Hydrogen Hubs, pipelines



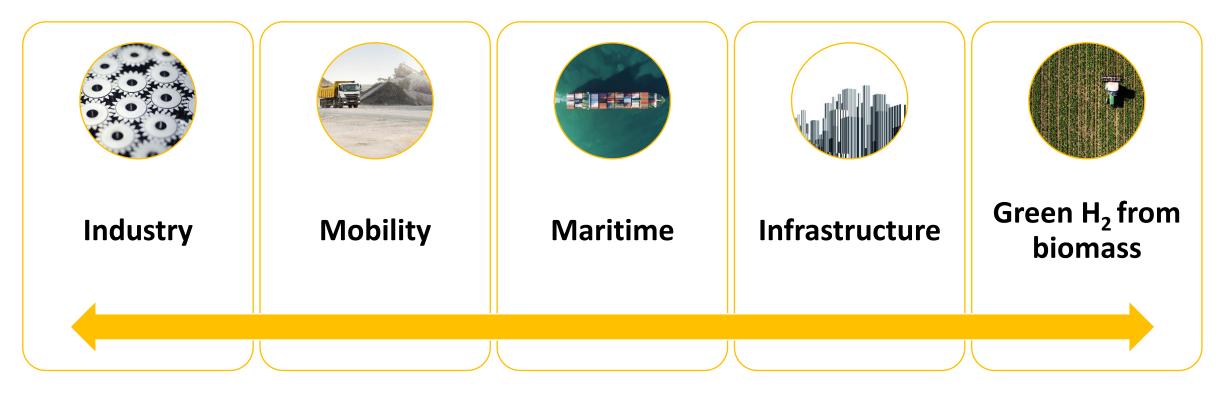
#### **Regulations & Standards**

Testing facilities, standards, regulations, safety & certification

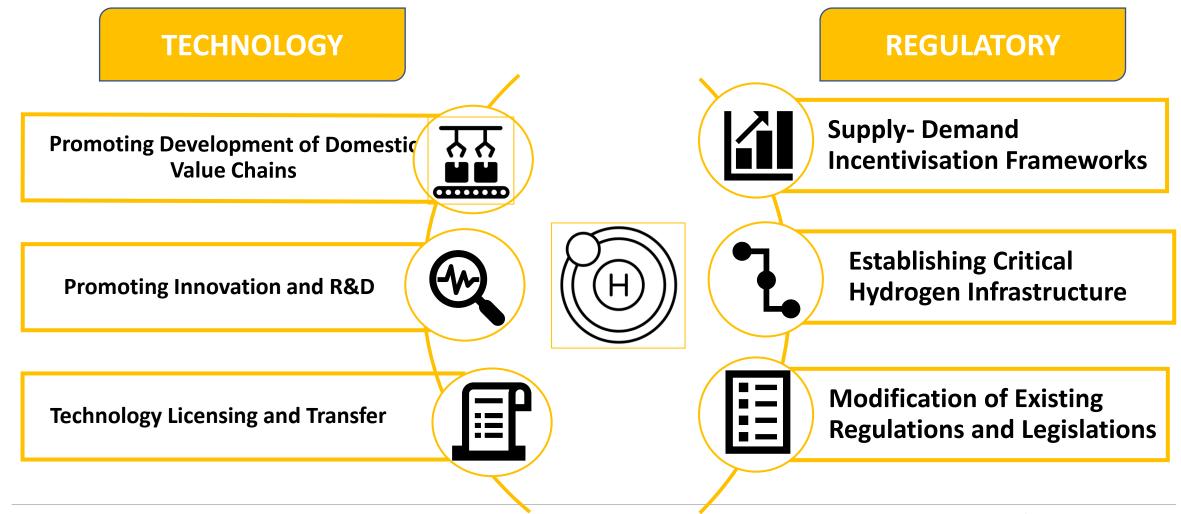



Skill Development, Public awareness

Coordinated skilling programme, online portal




### **KEY OUTCOMES OF MISSION**




## **GREEN HYDROGEN PILOT PROJECTS**

- Pilot project design and objectives based on sector
- Technology validation and identification of regulatory requirements
- Estimation of CFA based on additional costs related to Green hydrogen adoption



### **GREEN HYDROGEN- BARRIERS TO IMPLEMENTATIONS**





### **THANK YOU**

