Capacity Building Workshop for Financing Institutions on Green Hydrogen

July 07, 2023

9:00 am - 5:30 pm IST

Global Electrolyser manufacturing market – Trends in technology & manufacturing capacity

Shaji John

South Asia Regional Energy Partnership (SAREP)

Name Designation

What is green H2?

Hydrogen Overview

• With the energy sector representing ~75% of greenhouse gas ("GHG") emissions⁽¹⁾, the transition of energy to renewable sources is a crucial component to mitigating global warming and climate change

Decarbonization technologies like renewable power and biofuels offer constructive solutions, but green hydrogen offers the only long-term, scalable and cost-effective option in sectors such as steel, ammonia and transportation

Grey Hydrogen

• Hydrogen produced from natural gas or other light hydrocarbons

- **Blue Hydrogen**
- Hydrogen obtained in a similar way to grey hydrogen, but with and storage techniques applied

Main Types of Hydrogen

Green Hydrogen

carbon capture, utilization

• Also called "clean hydrogen," generated from renewable energy, using water as a feedstock, through a process called electrolysis

0

Hydrogen

Green hydrogen cost competitiveness

Hydrogen for refineries, ammonia production and methanol are viable as of today.

Applications in transportation, power and other industries start to become viable in optimal regions in 2-3 years.

Market opportunity for green hydrogen

Projected hydrogen demand sector wise

696 Mt to 1584 Mt

Annual demand for hydrogen expected by 2050

Investment would be made in production, storage and

Of world's energy in 2050 would be met with hydrogen

\$2 - \$5 trillion/year

Of economic impact worldwide by 2050

Market opportunity for Electrolysers

312x

60% Of the existing manufacturing capacity is concentrated within Europe

1. Includes Sales and Replacement of Electrolyzer after 15 years. 2. Estimated using hydrogen demand projections to achieve 2050 net zero from IEA

Source: Global Hydrogen Review, pg. 44, IEA 2021; State of the Hydrogen Market: Key Trends and Cost Analysis, REGLOBAL, 2020

9,000 to 19,000 GW

Cumulative demand for Electrolyzer capacity by 2050 at 50% capacity utilization factor

Increase in the Electrolyzer manufacturing capacity within the next decade

Current Capacity ~ 5.5 GW (1.5 GW AE, 1 GW PEM)

Niti Aayog estimates 160 GW of demand in India

Application		Potential H2 Market	H2 Use	Near T	erm Viability for India	Challenges / Unlock needed for commercial viability in India
Refinery			Hydrotreating		Grey H2 used already	Blending mandates will unlock demand
,			Hydrocracking		Green H2 costs below \$2/kg	Blended costs easily absorbed
Ammonia / Fertilizer		•	Feedstock	0	Grey H2 used already Green H2 costs below \$2/kg	Blending mandates will unlock domestic ammonia demand Large export market for green ammonia (as green H2 carrier or direct use) Most fertilizer producers in India are Co-operatives and could be slow to adapt Further, urea production needs sustainable CO2 which could be a bottleneck
Steel			Reducing Agent + Fuel	⊘		Large export market for green steel Green steel can be sold at a premium that automobile industry can absorb Green Steel needs R&D which large players in India (Tata, JSW etc.) can afford Small players are fragmented and use Coal DRI technology which has no green H2 case study from ROW
Natural Gas blending			Fuel			5-10% by volume H2 blends pose minimal infrastructure challenges Blended costs with natural gas easily absorbed
Methanol			Feedstock		Grey H2 used already Green H2 costs below \$1.5/kg	Small market currently Potential of methanol blending in gasoline could unlock future demand
Mobility	Aviation		Fuel			Dependence on H2/sustainable aviation fuel ready aircrafts. Pilots expected
	Shipping		Fuel			Dependence on H2/ammonia ready ships. Pilots expected
	Trucks / Buses /Mining Equipment/Forklift		Fuel			Dependence on H2 ready trucks and buses. Pilots expected
	Other vehicles		Fuel			Battery electric expected to dominate. H2 pilots for range extenders
Power	Grid Scale		Fuel			Dependence on fuel cells or H2 ready gas turbines Attractive application when extent of grid decarbonization increases
	Small Scale		Fuel			Dependence on fuel cell supplier Niche or mission critical applications which require 1-2 days of power backup
Cement			Fuel		Green H2 costs below \$1/kg	Not viable today without carbon tax. Small pilots can be expected
Industria	al Heat (generic)		Fuel		Green H2 costs below \$1/kg	Not viable today without carbon tax. Small pilots can be expected
Glass	Inert Atmosphere		Reducing Agent		Commercially viable today	
	Furnace Heat		Fuel		Green H2 costs below \$1/kg	Not viable today without carbon tax. Small pilots can be expected
Heat Treatment of metals			Reducing Agent		Commercially viable today	
Food (Margarine)			Hydrogenation		Commercially viable today	

Types of Electrolyzers

Technology readiness level - electrolysers

Source: IEA, Electrolysers - https://www.iea.org/reports/electrolysers; IRENA 2021; Yujing Guo et al, Earth and Environmental Science 371 (2019) 042022, Mark Ruth et al, 2017 Fuel Cell Seminar | Confidential

Ohmium's PEM Selection

ROSIVE 8 UHABIN sume 8 CHARLES	Solid Oxide WB +2 +2 +4 +5 Chromium 51,996 +2 +4 +4 +5 Chromium 51,996 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	Others.
	 Low density, awkward High temperature Thermal process Hazardous materials 	
ly required	12-hour start-ups; energy to maintain at temperature	
ons d	 Niche applications only Thermal integration, high cost Fragile ceramic - susceptible to pressure, plant changes 	

Electrolyzer Price Forecast

• The prices are not apples to apples.

• General PEM and Alkaline prices ranges are from the prices estimated by Goldman Sachs Investment Research, "Carbonomics, The clean hydrogen revolution", Feb 2022.

Source: Goldman Sachs Investment Research, "Carbonomics, The clean hydrogen revolution", Feb 2022.

About Ohmium

Leveraging NASA/US Navy PEM Advantages

 Efficient land utilization **Optimized balance of plant Proprietary vertical stacking**

Fast & flexible ramping **Compatible with renewable energy**

Directly pressu re-capable Safe and reliable Superior application integration

Taking a Page from Henry Ford's Book...

Enabling Very Competitive

Designed for High Volume Manufacturing

Leverage automotive supply chain Modular rapid to install sub-assemblies End-to-end supply chain control, PE to stack

Designed for Rapid, Flexible, Dense Installation

Competitive EPC cost, elimination of cranes Modular design for phased construction

Designed for High Availability, Low Operation Cost

Modular redundancy enabling high availability Rack-in, rack-out design Short duration service

Comprehensive Hydrogen Solution

The information provided herein is for reference only and subject to change.

Mark 1.5

7 x 6.0 kg/hr Up to 27 bar ≥ 99.99% (high) 10% - 100% 5 sec

Optiona

7 x 300kW_{dc} 400/415/480 V_{AC} 3ph 50/60 Hz 7 x 1.4 SLM DI water / 7 x 2.7 SLM City water

Mark 2

7 x 9.0 kg/hr Up to 34 bar 2 99.999% (ultra high) 10% - 100% 4 sec

Optional

7 x 450kW_{dc} 400/415/480 V_{AC} 3ph 50/60 Hz 7 x 2.1 SLM DI water /

-25 °C to 55 °C

8 x (2) Cabinets (1.8 x 1.4 x 2.5 m) Auxiliary Cabinets (1.8 x 1.3 x 2.2 m) Fully compatible TCP/IP, RS485 Designed to UL 2264A

Some of our ongoing projects and collaborations

Invenergy

NOVO HYDROGEN

CEPSA

Key policy recommendations to scale-up domestic manufacturing

- Reduce entry barriers to allow new OEMs with proven and efficient technologies \bullet
 - Current qualification criteria will only allow large established conglomerates to bid in the PLI scheme
 - Allow companies who have already established their R&D and manufacturing base in India ullet
- Do not consider reverse bidding mechanism for green hydrogen projects lacksquare
 - Only 58.6% of solar capacity allocated through the auctions held in 2017 got commissioned by the end of 2018.
- Incentivise domestic bidders in public sector procurement lacksquare
 - Companies with higher local content should be awarded with higher incentives and the relevant scoring mechanisms should be incorporated into the bid evaluation formula for all public sector procurement.
- Rationalise trade duties
 - Increase tariffs for imports of electrolyser stacks from 7.5% to atleast 25% \bullet

Thank You

Management Team

