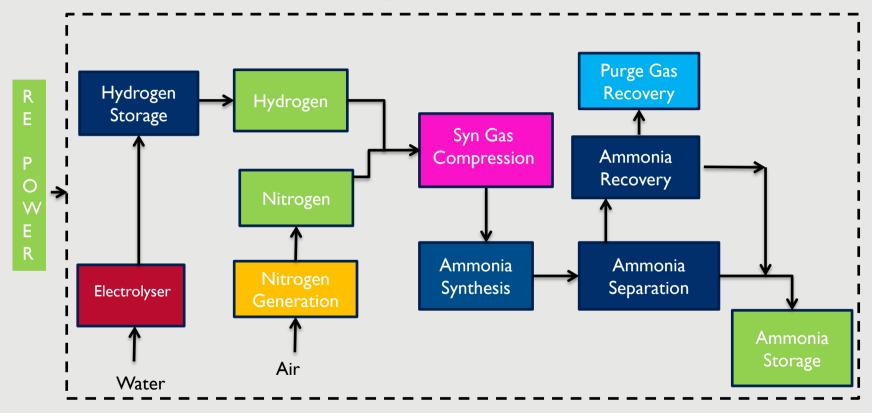

South Asia Regional Energy Partnership (SAREP)

Sizing Principle for a Typical Green Ammonia Plant

Ammonia Synthesis, Separation, and Storage



What is Green Ammonia ?

Green Ammonia Plant Configuration

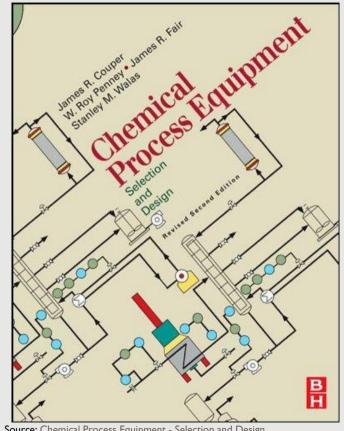
Ammonia Reaction Stoichiometry

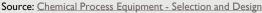
• Basic Equation

```
0.5 N<sub>2</sub> + 1.5 H<sub>2</sub> ⇔ 1 NH<sub>3</sub> \Delta H^{\circ}_{27 \circ C} = -46.35 kJ/mol

0.5 × 28 + 1.5 × 2 = 1 × 17

14 + 3 = 17


(Molecular weight of N<sub>2</sub>=28, H<sub>2</sub>=2, NH<sub>3</sub>=17)
```


- From above , to produce say 17 kg of Ammonia, we need 14 kg of Nitrogen and 3 kg of Hydrogen on theoretical basis
- $\,\circ\,$ Alternatively, to produce I kg of Ammonia, we need (14/17)= 0.824 kg of Nitrogen and (3/17)=0.176 kg of Hydrogen

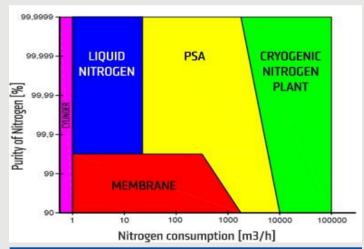
Sizing Methodology

- Define required Green Ammonia Plant capacity in MT/Day with capacity margin and Ι. Ammonia product specification (pressure, temperature, and purity)
- 2. Define Hydrogen specification (pressure, temperature, purity, flow rates – normal, minimum, and maximum) at the battery limit of Green Ammonia Plant
- 3. Calculate Hydrogen and Nitrogen requirement (t/d) based on the Plant capacity desired
- Select the type of air separation process (Membrane/ PSA/Cryogenic) depending on 4. the Nitrogen requirement and purity (minimum 99.99%)
- 5. Select the Ammonia synthesis loop pressure (140 to 300 bar) and type of equipment's applicable
- Configure the flow sheet using a suitable simulation software/calculation methods by 6. feeding in required process parameters (Flow/ pressure/ temperature/ vapor fraction/ composition/ catalyst volume etc). Carry out the simulation by suitably adjusting required parameters till the required production capacity and specification is achieved after convergence.
- 7. Calculate Heat & Mass balance, Power and Utility consumptions
- 8. Carryout Major Equipment's sizing using software/ Design resources (books & literatures)
- 9. Based on the broad specification arrived, carryout equipment costing (vendor/ cost indices/ historical cost/ correlations etc.)
- 10. Arrive at the project cost including all other project components using total equipment cost and typical percentages of equipment cost for other components

Basic Assumptions/ Thumb Rule for Green Ammonia Plant Sizing

- Hydrogen Required
- Nitrogen required
- Plant availability
- Plant Life
- Overall conversion in syn loop = 97 to 99%
- Power required

- = 179.4 kg/t of NH₃ (minimum purity of 99.99%)
- = 830.7 kg/t of NH₃ (minimum purity of 99.99%)
- = 8000 hrs/year
- = 25 to 30 years


= 0.7 to 1 t/t of NH_3

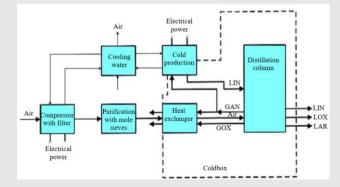
 $= 1.62 \text{ t/t of } \text{NH}_3$

- = 0.738 MW/t of NH Synthesis section)
- = 0.13 to 0.38 MW/t \Rightarrow NH₃(Air separation)
- = 0.75 to 0.480 MW (for refrigerated Ammonia storage)
- Cooling water circulation rate = 170 to 240 m³/t of NH₃
- Steam generation
- Raw water requirement
- Source I. <u>M. Fasihi et al.</u> 2. <u>thyssenkrupp</u>

Nitrogen Generation Options

Nitrogen Purification Technologies.									
		ASU (Cryogenic)	PSA	Membrane					
Temperature (°C)		-195 to -170	20-35	40-60					
Pressure (bar)		1-10	6-10	6-25					
Purity (wt.%)		99.999	99.8	99.5ª					
Energy consumption	(kWh/kg _{N2}) (GJ/t _{NH3})	0.1 0.3	0.2-0.3 0.7-1.0	0.2-0.6 0.7-2.0					
Capacity range (Nm ³ /h)		250-50000	25-3000	3-3000					
Load range (%)		60-100	30-100	-					
Investment cost (k€/tpd _{NH3}	y)	<8	4-25	25-45					
TRL		9	9	8-9					

^a In most cases membranes are used for nitrogen enrichment of air, rather than the production of highly purified nitrogen. Estimates based on [78,106,108–110].


Source: omega-air

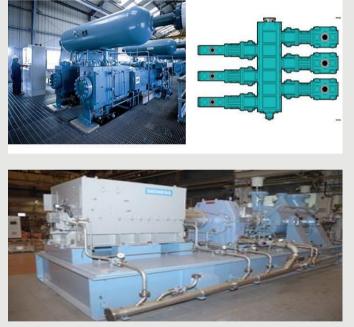
Parameter	Cryogenic	PSA	Membrane
Advantages	 Low amount of electricity per unit Nitrogen Produces very high purity Nitrogen Can generate liquid Nitrogen for storage on site 	 Low to moderate capital cost Cost-effective Nitrogen production of relatively high purities Quick installation and start-up 	 Low capital cost Production output is very flexible Quick installation and start-up Easy to vary purity and flow rate
Disadvantages	 Large site space and utility requirements High capital cost Limited scalability in production Long start-up and shutdown 	 High maintenance equipment Noisy operation Limited scalability 	 Uneconomical for high purity requirements Uneconomical for large outputs Requires relatively large amount of electricity per unit nitrogen

Selection aspects of Nitrogen generation Unit (PSA & CRYO)

	Effects of Purity Selection on Energy Required									
Generator Inlet 8.0 Bar										
System Type N2 Purity N2 (m³/min) ANR Air req (m³/Min) CCF Min Comp m³/Min Compressor KW req										
PSA	95%	1.5	1.94	2.91	1.15	3.34	18kw			
PSA	99.50%	1.5	2.42	3.63	1.15	4.17	30kw			
PSA	99.99%	1.5	4.24	6.36	1.15	7.31	45kw			
PSA	100.00%	1.5	7.45	11.17	1.15	12.85	75kw			
	ANR	= Air to Nitr	ogen ratio; (CCF = Comp	ressor corre	ction factor				

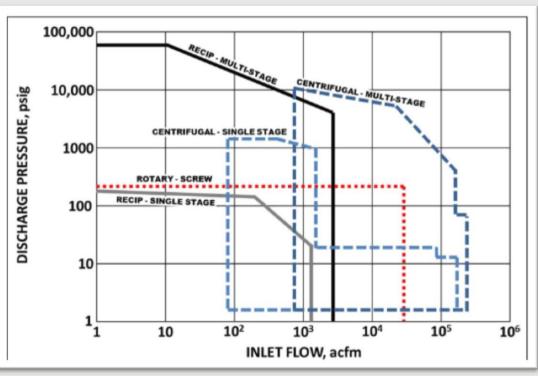
FLOW SCHEME ADD-ON FOR HIGH PURITY DX - MODEL Compressor Compressor After Coler Coler

Source: mvsengg.com


Source: oneillcompressedair.com

Cryoge	Cryogenic Air Separation Unit production details ($N_2 \ge 99.999$)									
Model	Unit	ZO- NZDN- 200	ZO- NZDN- 300	ZO- NZDN- 400	ZO- NZDN- 700	ZO- NZDN- 1000	ZO-NZDN- I 600	ZO- NZDN- 3000		
Nitrogen Production	Nm³/h	200	300	400	700	1000	1600	3000		
Liquid Nitrogen Production	L/H	/	10	10	20	40	60	150		
Nitrogen Purity	PPmO ₂	≤3	≤3	≤3	≤3	≤3	≤3	≤3		
Nitrogen Pressure	Mpa.A	0.34~1	0.34~1	0.34~1	0.34~1	0.34~1	0.34~1	0.34~1		
Plant Area	m²	95	150	220	260	300	320	410		

Source: z-oxygen


USAID

Selection chart for compressor type based on discharge pressure and flow

Source: DresserRand

 Number of stages depends upon the compressor ratio R_C selected (~1.3 to 3.5)

Source: Turbomachinery Laboratory, Texas A&M Engineering Experiment Station conference proceedings, 2016

Synthesis Loop pressure selection

Loop Pressure	Advantages	Disadvantage	Cost Impact analysis c	f Loop pr	ressure	
	, in the second s		Basis: 3 yr	150 Atm	225 Atm	300 Atm
Around 150 kg/cm2	 Lower compressor power reduced number of stages, lower vessel and pipe/accessories thickness 	 Almost double the catalyst volume(for pressure 150 vs 220)- higher catalyst cost and inventory Bigger equipment sizes High refrigeration loads Lower conversion per pass Higher recycle load 	Converter Fresh feed and recycle compressors and turbines Refrigeration compressors and turbines Catalyst cost" Sub-total Misc. equip cost difference (piping, etc.)" Fuel cost difference ^e (Basis: 3 years, 40¢/MM BTU) Net difference	\$756,000 743,200 361,700 228,700 2,089,600 	\$626,500 874,500 310,100 124,440 1,935,540 25,000 133,923 4,863	\$721,700 896,200 286,300 103,250 2,007,450 32,000 93,746 43,596
Around 200 kg/cm2	 Higher conversion per pass Reduced catalyst volume Reduced refrigeration load Reduced vessel sizes Reduced recycle load 	 More stages of compressor and operating cost Higher thickness of pipes and vessels 	 * \$0.333/lb. * Incremental increase due to hig drums, etc. Source: <u>Chemical Reactor Design</u> 			exchangers,

- Higher synthesis loop pressure (say 300 bar) may be preferred for plant capacity upto 100 tpd (mostly) modular, to take advantage of higher conversion per pass, lower number of equipment, reduced refrigeration requirement etc.
- Loop pressure around 200 to 220 bar may be preferred for capacities upto 2200 tpd (as seen in most of the running plants)
- Capacities beyond 3000 tpd (say upto 10000 tpd, presently heard) cost effectiveness may be analysed for loop pressure depending upon whether the equipment like compressor etc are available for such single stream capacity. It may call for parallel stream of some equipment.

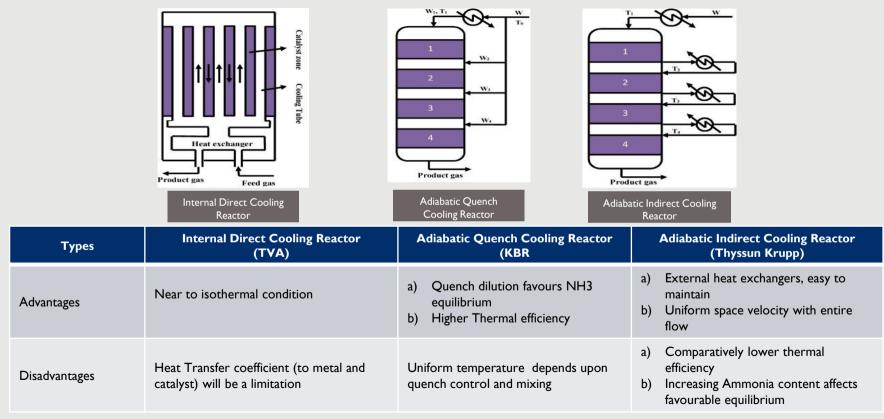
Selection of Catalysts for Ammonia synthesis

- Looking at the table, conventional promoted Iron catalyst seems to be cost effective with catalyst life of >10 yrs.
- But for the cost and stability issue,
 Ruthenium based catalyst is
 desirable with low impurity level
 in Green Ammonia plant.
- KBR is already using this in one of their technologies.

Comparison of SMR-Based Ammonia Synthesis Processes With Commercial Iron-Based and Ruthenium-Based Catalysts.

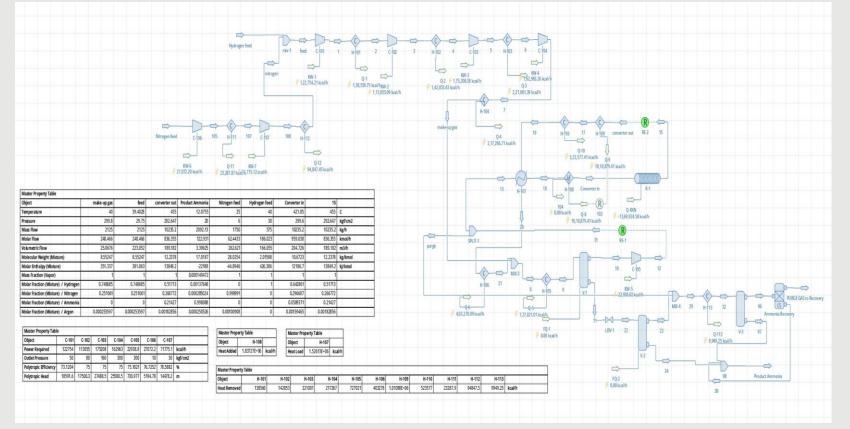
		IRON	RUTHENIUM	
	Fe ₃ O ₄	Fe ₃ O ₄ with Co	Fe _{1-x} O	Ru–Ba–K/AC
Year	1913	1979	1986	1992
Temperature (°C)	360-520	350-500	300-500	325-450
Pressure (bar)	120-450	100-300	100-250	70–100
Energy consumption (GJ/t _{NH3})	28	28	27-28	26-27
H ₂ :N ₂ ratio	2–3	2–3	2-3	1.5–2
Catalyst lifetime (y)	>14	-	6-10	≤10
Relative activity	1.0	1.2	1.5	2-10
Thermal stability	High	Medium/Low	Medium	Low
Relative catalyst cost	1.0	1.5	1.1	150-230

Source: Techno-Economic Challenges of Green Ammonia as an Energy Vector


Effect of Variables on Ammonia Synthesis Reactor

 $3 H_2 + N_2 \rightleftharpoons 2 NH_3 \quad \Delta H^{\circ}_{27 \, ^{\circ}C} = -46.35 \text{ kJ/mol}$

- **Pressure**: An increase in pressure will improve the conversion rate by increasing the reaction rate and improving the ammonia equilibrium.
- **Inlet temperature**: The temperature has conflicting effects since a higher temperature will increase the reaction rate while decreasing the equilibrium concentration.
- **Space velocity** (m³ of gas per hour/ m³ of catalyst): Increased space velocity increases the total ammonia production but decreases the outlet ammonia concentration.
- **Inert level**: Inert gases decrease the partial pressures of hydrogen and nitrogen forcing the equilibrium to change detrimentally.
- **Nitrogen/Hydrogen ratio**: The reaction rate exhibits a maximum at a particular nitrogen/hydrogen ratio while the maximum depends on space velocity. This ratio is generally between **2.0-3.0**.
- **Catalyst particle size**: Smaller particles have higher conversion rates due to lower diffusion restrictions and larger surface area.


Typical converter arrangement with heat recovery

Source: M.H. Khademi et al.

Typical flow sheet configuration & output of a simulation study for Green Ammonia

Mass balance, Power and Utility calculations-typical plant

Property	Units			Feed	make-up	Converter	Converter	HP Sep lia	HP Sep	Product	PURGE
rioperty	Units	Hydrogen	nitrogen	(N2+H2)	gas	in	out	HP Sep liq	vap	Ammonia	GAS
Temperature	С	25.00	25.00	28.28	40.00	421.85	455.00	8.00	8.00	-10.09	-6.31
Pressure	kgf/cm2	30.00	1.03	29.75	299.80	299.60	298.90	297.60	297.60	5.00	3.00
Mass Flow	kg/h	375.00	1750.00	2125.00	2125.00	8236.50	8236.50	2121.88	8239.58	2095.87	30.13
Molar Flow	kmol/h	186.02	62.44	248.47	248.47	778.35	655.34	126.20	777.61	123.06	3.52
Volumetric Flow	m3/h	158.09	1527.21	215.03	25.07	166.12	144.91	3.24	69.25	3.22	26.55
Molecular Weight (Mixture)	kg/kmol	2.02	28.03	8.55	8.55	10.58	12.57	16.81	10.60	17.03	8.56
Mass Fraction (Vapor)		1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00
Molar Fraction (Mixture) / Hydrogen		100.00%	0.00%	74.87%	74.87%	64.67%	48.65%	1.92%	64.61%	0.00%	75.83%
Molar Fraction (Mixture) / Nitrogen		0.00%	99.90%	25.11%	25.11%	29.26%	25.37%	0.52%	29.32%	0.00%	21.99%
Molar Fraction (Mixture) / Ammonia		0.00%	0.00%	0.00%	0.00%	5.86%	25.74%	97.50%	5.87%	100.00%	0.00%
Molar Fraction (Mixture) / Argon		0.00%	0.10%	0.03%	0.03%	0.20%	0.24%	0.06%	0.20%	0.00%	2.18%

	UTILITY REQUIREMENT (CW/REFRIG/BFW) & EXPORT (HP steam)												
		Supgas o	Syngas compressor inter&after coolers				Process	Coolers		Nitrogen Compressor		Ammonia	
		Syligas C	ompressor	interodatier	COOLETS	CHILLER	COOLER	WHB	BFWH	Nitrogen	Compressor	cooler	Total
Heat Exchangers with CW/CHW	\rightarrow	H-101	H-102	H-103	H-104	H-105	H-106	H-109	H-110	H-111	H-112	H-113	
	Units												
Heat Removed	kcal/h	108967	142853	221001	217267	551889	425229	815733	422579	189650	90665.8	78754.2	
CW flow @10 Deg C delta	t/hr	10.90	14.29	22.10	21.73		42.52			18.97	9.07		139.56
BFW/DMW @45 bar	t/hr								2.16				2.16
HP Steam @ 45 bar	t/hr							2.04					2.04
Refrigerant Load	TR					182.51						26.04	208.55

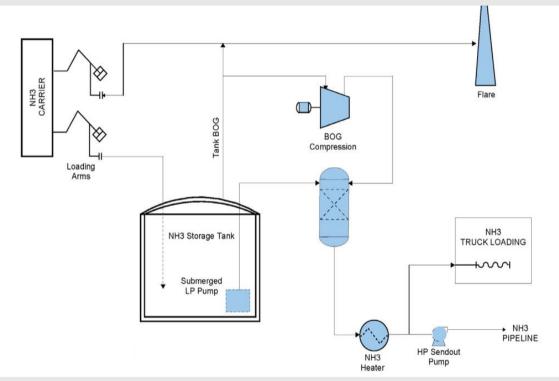
Compressor Power Red	luired	SynGas Com	pressor			Recycle	Nitroge	n Comp
Object		C-101	C-102	C-103	C-104	C-105	C-106	C-107
Power Required	kW	137.66	131.48	203.77	189.53	5.90	183.06	82.15
Outlet Pressure	kgf/cm2	50	80	160	300	300	10	30
Polytropic Efficiency	%	73.12	75.00	75.00	75.00	75.03	81.24	78.59
Polytropic Head	m	17929.9	17500.3	27488.5	25580.5	201.3	33805.8	14249.6
Motor Power	KW	148.99	142.30	220.53	205.11	7.03	198.12	91.07
	TOTAL KW				1013.14			

Ammonia Storage Tank Sizing and Selection

Туре	Storage Pressure (bar)	Temp °C	Capacity range (Tons)	Ton of NH₃/t of steel	Refrigeration compressor
Non refrigerated	16 to 18	20 to25	Up to 270 tons	2.8	None
Semi refrigerated	3 to 5	5	450 to 2700	10	Single stage
Refrigerated	1.1 to 1.2	-33	5000 to 50000	41 to 45	Two stage

- Normal fill volume 85% (to allow for expansion/vaporization)
- Normal boil off rate in refrigerated storage tank =0.04%/day of storage capacity
- Loading operation Tanker/Wagon/Ship
- Unloading operation Tanker/wagon/Ship

Source: fertilizerseurope.com



Schematic Diagram of Refrigerated Ammonia Storage

Source: Black & Veatch

---- FOR MORE INFORMATION AND UPDATES

USAID/India Contracting Officer's Representative: Anurag Mishra amishra@usaid.gov

SAREP Chief of Party: Rakesh Kumar Goyal rkgoyal@sarep-southasia.org

Disclaimer:

The data, information and assumptions (hereinafter 'data-set') used in this document are in good faith and from the source to the best of SAREP (the program) knowledge. The program does not represent or warrant that any data-set used will be error-free or provide specific results. The results and the findings are delivered on "as-is" and "as-available" data-set. All data-set provided are subject to change without notice and vary the outcomes, recommendations, and results. The program disclaims any responsibility for the accuracy or correctness of the data-set. The burden of fitness of the data-set lies completely with the user. In using the data-set data source, timelines, the users and the readers of the report further agree to indemnify, defend, and hold harmless the program and the entities involved for all liability of any nature.

