

Assessment of Potential Benefits of Cross Border Electricity Trade & Framewor for Ancillary Services Market in South Asia

#KPI//C

Integrated Research and Action for Development (IRADe)

February 2023









KPMG.com/in

### Table of Contents





## **Objective of the Study**

Assessing the Potential Benefits of Cross Border Electricity Trade for Affordable Supply of Electricity, Facilitating, Grid Balancing of Renewable Energy Integration, and Suggesting a Framework for Ancillary Service Market in the South Asia

### Uniqueness of the study

- Detailed Modelling of power system operations of BBINS over 8760 hours
- Nuanced Cost Sensitivity Analysis for transmission enhancement, regional supply balance, and cross border sharing of reserves
- Convexification of non-linear unit startup/ shutdown decision modelling
- Computation of capacity credits of RE generation under regional cooperation

# Scope of Work



## **Scope of Work**

Quantification of the economic benefits of enhanced South Asian regional cooperation and integration

Objective 1

Review and Analyze the current and future demand – supply positions of each South Asian country, including growth of renewables, for the next 15 years

Objective 2

Carry out comprehensive energy modelling exercise to assess the impact of various constraints on power system operations (Taking the reserve requirements into consideration)

Objective 3

Review and analyze the existing market mechanism related to grid balancing in each country and the region and its associated policy, regulatory, legal and technical frameworks.

Objective 4

Suggest a draft roadmap (regional and country wise) as well as an action plan for implementation of the regional framework for ancillary services market in the region.

## Methodology & Approach

Modeling Framework - Development of Recursive Dynamic UCM



### **Methodology: Unit Commitment Modelling** for uns for 10 days at a time, the recursive dynamic way (where the final "state" of the power system for the previous day would be

assumed as a "start point" for the following day), summing up to model runs for 8760 hours in a year



time



#### **MODEL** Outputs

- **Optimal schedules** of generators
- Optimal quantum of power to be bought or sold
- Transmission flows
- Optimal reserves to be maintained

# **Model Size**

| Component                        | Unit Commitment for 2019  |  |  |  |
|----------------------------------|---------------------------|--|--|--|
| Total generators                 | 775                       |  |  |  |
| Zones                            | 33                        |  |  |  |
| Transmission lines               | 60 interzonal connections |  |  |  |
| Number of Hours<br>Considered    | 8760                      |  |  |  |
| Number of Variables in the Model | 85-95 Lakhs per quarter   |  |  |  |
| Number of Constraints            | 85-95 Lakhs per quarter   |  |  |  |
| Number of Scenarios              | 7                         |  |  |  |

| Model<br>Characteristics            | Unit Commitment for 2019                                       |  |  |  |  |
|-------------------------------------|----------------------------------------------------------------|--|--|--|--|
| Software Used                       | GAMS                                                           |  |  |  |  |
| Maximum RAM<br>Utilized per quarter | 30 GB                                                          |  |  |  |  |
| Processor Speed                     | 2.39 GHz                                                       |  |  |  |  |
| Model Run Time                      | 3-5 hours per quarter per<br>scenario on 256 GB RAM<br>Machine |  |  |  |  |
| Number of Simulations               | 28 (4 simulations per scenario,<br>one for each quarter)       |  |  |  |  |

### Scenarios considered for the study

| Scenario   | Assumption on Inter Country<br>Transmission | Assumption of Reserve Management                               |  |  |  |
|------------|---------------------------------------------|----------------------------------------------------------------|--|--|--|
| Scenario 1 | No Transmission                             | Local Management of Reserves for each zone                     |  |  |  |
| Scenario 2 | Existing Transmission (Constrained)         | Local Management of Reserves for each zone                     |  |  |  |
| Scenario 3 | Existing Transmission (Constrained)         | At least 50% of reserves to be maintained locally in each zone |  |  |  |
| Scenario 4 | Existing Transmission (Constrained)         | No restriction on import of reserves                           |  |  |  |
| Scenario 5 | Unconstrained Transmission                  | Local Management of Reserves for each zone                     |  |  |  |
| Scenario 6 | Unconstrained Transmission                  | At least 50% of reserves to be maintained locally in each zone |  |  |  |
| Scenario 7 | Unconstrained Transmission                  | No restriction on import of reserves                           |  |  |  |

## Key Analysis & Findings

# How does 2019 analysis shed light on the next steps for enhanced cooperation?



What are the cost savings from South Asian regional integration?

How sensitive are the costs to
Regional Trading of Electricity (Merit Order Dispatch)
Cross border Transmission Enhancement
Cross border sharing of reserves

|                                                      | TOTAL CO       |        |       |       |           |       |                                           |
|------------------------------------------------------|----------------|--------|-------|-------|-----------|-------|-------------------------------------------|
| Scenario                                             | BANGLADESH     | BHUTAN | INDIA | NEPAL | SRI LANKA | TOTAL | BENEFIT OF<br>REGIONAL<br>COOPERATION (%) |
| No Transmission                                      | 2386           | 1752   | 30096 | 1671  | 1052      | 36957 | -                                         |
| Constrained Transmissior<br>Local Reserves           | , 1853         | 1752   | 30387 | 1557  | 1051      | 36600 | 1%                                        |
| Constrained Transmissior<br>Imported Reserves (50%   | ) 1842         | 1752   | 30235 | 1554  | 1053      | 36435 | 1.5%                                      |
| Constrained Transmission<br>Imported Reserves (100%  | ),<br>5) 1841  | 876    | 29956 | 690   | 1051      | 34415 | 7%                                        |
| Unconstrained Transmissic<br>Local Reserves          | on, 1185       | 876    | 30923 | 699   | 406       | 34089 | 8%                                        |
| Unconstrained Transmissic<br>Imported Reserves (50%) | on, 1201       | 0      | 30746 | 79    | 420       | 32446 | 12%                                       |
| Unconstrained Transmissic<br>Imported Reserves (100% | on,<br>5) 1211 | 0      | 30620 | 0     | 431       | 32262 | 13%                                       |

# **Cost Components**

The benefits of regional cooperation have been assessed in terms of variable costs of generation, balancing costs, costs of maintaining reserves and cost of reserve violations.







# Savings in Cost Components via





**BALANCING COSTS** 







How sensitive are the costs to regional electrical energy cooperation?















How sensitive is the cost to transmission enhancement between various nations?



Existing Transmission Capacities with 100% cross border sharing of reserves





How sensitive are the costs to regional cooperation in ancillary services?



### Reserve Marginal Cost of **BANGLADESH**

More Competition, Lesser Reserve Marginal Cost ······ No Transmission

- Constrained Transmission, Local Reserves
- Constrained Transmission, Imported Reserves (50%)
- ······ Constrained Transmission, Imported Reserves (100%)
- ..... Unconstrained Transmission, Local Reserves



25

20



More Competition, Lesser Reserve Marginal Cost ······ No Transmission

- ..... Constrained Transmission, Local Reserves
- **Constrained Transmission, Imported** Reserves (50%)
- ..... Constrained Transmission, Imported Reserves (100%)
- ..... Unconstrained Transmission, Local Reserves



25

Cents/kWh



Percentage (Total Hours: 8760)

Capacity Credits of Solar & Wind Power Generation





INDIA

### INDIA- ENABLING DEMAND SHIFTING

#### Capacity Credits of Solar Generation in **BANGLADESH**



#### Capacity Value of Solar Generation in **NEPAL**



Capacity Credits of Wind & Solar Generation in INDIA



Hours

### **Enabling Demand Shifting - INDIA**



## Conclusions

Allowance of cross border utilization of reserves, with enhanced transmission capacities can lead to up-to 13% reduction in overall costs

With enhanced regional cooperation, cheaper resources get better utilized to provide energy and balancing needs

Enhancement of transmission capacities allows for balancing across large areas and hence, leads to reduction in balancing costs

Marginal cost of reserves declines with regional cooperation as the opportunity value of reserves are much higher when they are required to be maintained locally

Enhancement of transmission capacities seems to have the highest benefit in terms of reduction of nodal energy prices as well as the volatility in nodal prices in the South Asian region

# Thank You