

South Asia Regional Initiative for Energy Integration (SARI/EI) Coordinated interconnection transmission planning and operation: For secure reliable Grid interconnection between India- Nepal

by Mr. Vinod Kumar Agrawal, Technical Director and Rajiv Ratna Panda, Technical-Head SARI/EI/IRADe

Workshop with Nepal stakeholders on "Enhancing Energy Cooperation between India- Nepal" 11.30 AM - 12.00 PM, 24th July 2019 at Nepal Electricity Authority, Kathmandu, Nepal

۲

Outline

Hydro Power Potential and future Plan in Nepal.

South Asia Cross Border Transmission Capacity by the year 2036/2040.

RE capacity Deployment in India.

Renewable Integration and Grid Balancing

□ India-Nepal : Existing Cross Border Transmission Line and Future Plan

Current Institutional Mechanisms for Coordination System Planning and operation.

Regional Coordinated system planning –Institutional Mechanism

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy cooperation & Integration in South Asia-30th-31st August'2018Raiiv/Head-Technical/SARI/El/IRADE

Hydro Power Potential and future Plan in Nepal

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooneration & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy Cooneration & Integration in South Asia-30th -31st August 2013Raiiy/Head-Technical/SARI/FI/IRADI

Hydro Power Potential in Nepal

	Theoretical Potential in MW			Technical Potential		Economical Potential	
	Major river	Small river		Number	Technical	Number	Economical
Major River Basins	courses having	courses having		of	Potential	of	Potential in
	catchments	catchments	Total	Project	in MW	Project	MW
	areas above	areas 300-		Sites		Sites	
	1000 km ²	1000 km ²					
Sapta Koshi	18750	3600	22350	53	11400	40	10860
Sapta Gandaki	17950	2700	20650	18	6660	12	5270
Karnali and Mahakali	32680	3 <mark>5</mark> 00	36180	34	26570	9	25125
Southern River	3070	1040	4110	9	980	5	878
Country Total	72450	10840	83290	114	45610	66	42133

Source: Government of Nepal Water and Energy Commission Secretariat Electricity Demand Forecast Report (2015-2040)

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy Cooperation & Integration in South Asia-30th-31st August'2018Raiiy/Head-Technical/SARI/EI/IRADE

Hydro Power Potential in Nepal : Plan and Vision

Government white paper, Generation of Hydropower

 Increase the consumption of electricity per person to 700 KWH (Kilo watt per hour) in 5 years and to 1500 KWH in 10 years.

• 5 GW in 5 years and 15 GW in 10 years.

storage projects are being prioritized.

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy cooperation & Integration in South Asia-30th-31st August 2018Raiiv/Head-Technical/SARI/EI/IRADE

South Asia Cross Border Transmission Capacity by the year 2036/2040

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy cooperation & Integration in South Asia-30th-31st August 2018Raiiy/Head-Technical/SARI/EI/IRAD

SARI/EI

Integrated Research and

Big Picture -South Asia Cross Border Transmission Capacity by the year 2036/2040

 Significant Transmission System Interconnection (Both AC and DC) are Planned and Proposed.

43.2 GW additional Cross Border Transmission Inter. Capacity by 2036.

Large scale hydro power development in Bhutan and Nepal and Renewable Energy (175 GW by 2022) In India.

SOUTH ASIA POWER GRID Additional 43.2 GW Cross Border Grid Interconnection by 2036 Bhuta Shutan-Indi 17000 MW lep Nort Bhutan. akistan-Indi Pal-India 15800 MW Bang<mark>la</mark>desh dia Nor West East South Asia urrent Power Installed by 2036 Bangladesh Capacity 394 GW Nepal to Bangladesh vi 2000 Bangladesh via South 1000 500 All Fig are in MW rces 1Bangladesh-India Bheramara –Baharampur-Existing 500 MW

Complied from CEA-Perspective Transmission Master Plan, Bangladesh-PSMP-20-w, Other Sources 1Bangladesh-India Bheramara – 2 From Nepal 1,000 by 2030 Power import by using Case 3 T/L (upgrade to 765kV AC) and From Nepal (Purnea -Barapukuria), 1,000 by 2025, Power import by using Case 3 T/L (initially

400kV AC) 3 Bhutan-Bangladesh via-_India 1000 MW-Bongaigaon/Rangia -Jamarpurt,000 by 2030-Power import from Bhutan 7 4 400 MW by 2020 (100 MW existing) Construction of HVDC (500MW) in Comilia Construction of HVDC (500MW) in Comilia S/S. Some load (100 MW) in Comolia (N) S/S will be disconnected from Indian System 5 1000 MW by 2023 and 1000 MW by 2025 (Power Import Using Case 2 T/L (± 800KV HVDC) 6 1000 MW by 2030 Bibiyana-Meghalaya (PSPP) 7 At the Proposal Stage , detailed planning to be done.

RE capacity Deployment in India

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy Cooperation & Integration in South Asia-30th -31st August 2018Raiiy/Head-Technical/SARI/El/IRADI

SARI/EI

RE capacity Deployment in India

INDIA's NDCs: By the year 2040, the **40 percent** of its total installed capacity will be from non-fossils Fuel (Hydro, Nuclear and Renewable Energy Sources variety); By 2030, a concurrent reduction in emissions intensity of GDP by **33**-**35**% from a 2005 baseline:

thtps://powermin.nic.in/sites/default/files/webform/notices/Report_of_the_Committee_on_optimal_energy_mix_in_power_gener ation_on_medium_and%20long_term_basis.pdf

Renewable Integration and Grid Balancing

GtG Report _ **Some of the salient features & findings:**

- Simulation Objective Cost Optimization;
- Primary tool Detailed production Cost Model;
- RE penetration by quantum 370 TWH;
- RE penetration by %..... 22% of electricity consumed;
- RE Curtailment 1.4%;
- Peak Ramp 32 GW/Hour;
- Report can form basis to further explore (Exclusions) :
 Optimal renewable resources;
 - Intrastate transmission siting and;
 - System stability during contingencies;

GREENING THE GRID:

Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I-National Study

GREENING THE GRID PROGRAM A Joint Initiative by USAID and Ministry of Power

Hydropower: Slow capacity addition in India

Large hydropower installed capacity trend and its share of total capacity

During FY2017-18, only 815 MW(1) of capacity addition of large hydro has been achieved against the target of 1,305 MW. This also suggests that target itself is very conservative

Contracting share in overall generation mix due to higher capacity addition from other sources of power generation

India-Nepal : Existing Cross Border Transmission Line and Future Plan

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooneration & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy Cooneration & Integration in South Asia-30th-31st August/2018Raiiy/Head-Technical/SARI/EI/IRAD

Integrated Research and

India-Nepal : Existing Cross Border Transmission Line and Future Plan

Nepal–India Cross Border line -to exchange the power between two countries through various lines operating at various voltage levels from 11kV to 220kV.

- □ Total 14 no of Interconnections
- Presently Nepal is importing power from India (432 MW).
- The TRANSMISSION SYSTEM DEVELOPMENT PLAN OF NEPAL has identified six locations for cross-border power line (400 KV level) with India.

□ The cross-border location is proposed in such way that the load center and generation hub is closer to each

SARI/EI

India-Nepal : Proposed Cross Border Transmission Line

S.N.	400 kV Transmission Line	Configuration	Length Circuit km
Α	Cross Boarder interconnection with India		
1	Inaruwa-Purniya (India)	Double	132
2	New Dhalkebar- Muzzafarpur	Double	199
3	New Butwal - Gorakhpur	Double	131
4	Phulbari (Lumki)- Lucknow	Double	180
5	Dododhara- Barelly	Double	600
6	Attariya-Bareli	Double	260
	Total		1501
В	Cross Boarder interconnection with China		
7	Ratmate-Chilime Hub- Kerung	Double	110
8	Arun 3- U Arun - Latse	Double	127
	Total		237
S.N.	400 kV Transmission Line (East-West)	Configuration	Length Circuit km
1	Damak-Duhabi-Inaruwa	Double	130
2	New Hetauda- New Butwal	Double	300
3	New Butwal-Phulbari-Mainatara-Dododhara-Attariya- (Rupalgadh)-Pancheswor	Double	800
	Total		1230

Importance of Coordination System Planning and Operation in South Asia

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy Cooperation & Integration in South Asia-30th-31st August 2018Raiiy/Head-Technical/SARI/FI/IRAD

Importance of Coordination System Planning and Operation in South Asia

- **Power system integration in South Asia can bring potential large technical, operational, economic power system benefits in the Region.**
- Coordinated system planning, operation is a very fundamental exercise for effective power system integration and expansion in South Asia.
- Ensure safe, secure and reliable South Asia power system integration and expansion.
- □ Importantly such coordinated consultative planning process also build a sense of consensus among the South Asian Countries.
- □ In future, with large penetration of Renewable (wind and solar), changing energy mix, DSM, Smart Grid, Electric vehicles and storage calls for a more integrated and coordination planning for most economic & technical planning of power system.

Current Institutional Mechanisms for Coordination System Planning and Operation

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy cooperation & Integration in South Asia-30th-31st August 2018Raiiy/Head-Technical/SARI/El/IRADE

Current Institutional Mechanisms for Coordination System Planning and Operation

Joint Steering Committee and Joint Technical Team at bilateral level among South Asia Countries which takes care for planning coordination.

- Joint Technical Team comes up with the various transmission interconnection option/feasibilities.
- System operation and scheduling and dispatch:- Load Dispatch Centres coordinates among each other for cross border transactions.
- Coordinated System operation and scheduling essential for secure and reliable South Asia grid.

Need for South Asia Technical Institutional Mechanism International Best Practices of Technical Institutional Mechanism

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy cooperation & Integration in South Asia-30th-31st August 2018Raiiv/Head-Technical/SARI/El/IRADE

Need for South Asia Technical Institutional Mechanism International Best Practices of Technical Institutional Mechanism

entsoe

Reliable Sustainable Connected

European Union ENTSO-E's responsibilities in enhancing the cooperation between its 41 member TSOs across the EU to assist in the development of a pan-**European electricity** transmission network

- **Developed** the Network 0 codes on System operation, connection and capacity allocation etc.
- System Development 0 Committee
- System Operation Committee
- **Market Committee** 0
- **Research Development** 0 **Committee**

Southern African Power Pool Aim to provide the least cost, environmentally friendly and affordable energy and increase accessibility to rural communities.

It is a Inter-Utility organisation established through Inter-Utility MOU

- **Operational**
 - **Subcommittee**
- Planning Subcommittee
- Environment **Subcommittee**
- **Operating Guidelines** 0
- DAM Book of Rules \circ
- DAM Legal Agreement

PJM is a regional transmission

coordinates the movement of

wholesale electricity in all or

parts of 13 States and the District

(RTO)

that

organization

of Columbia.

West African Power Pool

West Africa Power Pool: Integrate the operations of national power systems into a unified regional electricity Utility market. Inter **Organisation, WAPP Utility** Members (26)

- **Operating Agreement**
- **Operating Committee** (OC)
- Planning Committee (PC)
- Implementation • Market Committee (MIC)
- Markets and Reliability Committee (MRC)
- **Other Sub Committees** and Task Forces
- Transmission **Owners** Agreement

• Engineering and Operating **Committee (EOC)**

- Strategic Planning & **Environmental Committee**
- Operation Manual-WAAP
- Regional Market Rules for the WAPP
- Transmission Tariff Methodology
- 2012-2015 WAPP Business Plan 20

Confidential©2017

ystem Operation in India

PGCIL&

RLDC

1994

Onwards

RLDC & CEA

before 1914

۲

- **Independent System Operation is important for** Integration of power grids.
- Safe, Secure, Reliable Integration Development of Power Market and Market Operation.
- India followed a gradual and systematic approach towards a independent system Operators.

FPLP Forum of Load Despatchers envisions being a catalyst in reliable, efficient and economic operation of the Indian bulk electric power supply system.

- Promoting technological excellence and harmonization of practices
- Promoting compliance to Reliability Standards
- Facilitating development of Ancillary Services in power system
- Promoting capacity building in Power System/Market Operation

Forum of Load Despatchers i.e. FOLD is a forum of organisations carrying out System Control activities in India It has been created vide reference no.: 15/8(1)/2008-FoR/CERC dated 02.01.2009 on the basis of the decision arrived at in the ninth meeting of FoR held at Bhubaneshwar on 14th & 15th November 2008

Way forward

- Building new transmission line
- **Goldson Storage projects, taking advantage of Renewable energy Development in India.**
- □ As AC interconnection increases
 - N-1, N-2 Transmission planning
 - Strengthening Nepal's Internal Power System
 - Developing isolated system and protection scheme.
 - Taking steps to have black start
- Developing various Regulations operational and planning aspects of CBET.
- Improving Project execution
- Building Institutional Mechanism such South Asia Forum of Transmission utilities and South Asia Forum of System Operators
- Planning for Trilateral and Multilateral Power Trade
- Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia-30th-31st August 2018Raiiy/Head-Technical/SABI/EI/IRADE

Thank You

India-Nepal : Proposed Cross Border Transmission Line

Name of the Link	Key Features of the Line	Associated generation projects
Attariya-Bareily	Single line of double circuit 400kV quad Moose transmission line of distance about 140 KM	From export-oriented HPP in the Mahakali, Karnali and Seti corridors in Zone-1 area of Nepal
Dododhara– Bareily	2 No. of double circuit 400kV quad Moose transmission line of distance about 200 KM	From export-oriented HPP in the Mahakali, Karnali and Seti corridors in Zone-1 area of Nepal
Phulbari–Lukhnow	2 No. of double circuit 400kV quad Moose transmission line of distance about 200 KM	Evacuating the power from Nalsyau Gad, Bheri Corridor in Zone-2 of Nepal to Lukhnow, India
New Butwal– Gorakhpur	2 No. of double circuit 400kV quad Moose transmission line of distance about 125 KM	Evacuating the power from Marsyandi, Kaligandaki and Gandaki Corridor in Zone-3 of Nepal to Gorakhpur
Dhalkebar — Muzzafarpur	2 No. of double circuit 400kV quad Moose transmission line of distance about 130 KM	evacuating the power from Khimti, Tamakoshi and Dudhkoshi Corridor in Zone-4 of Nepal to Muzafarpur
Inaurwa – Purnea	2 No. of double circuit 400kV quad Moose transmission line of distance about 110 KM	evacuating the power from major corridor likes Arun and Koshi in Zone-5 of Nepal to Purnea, India

Solar and Wind Capacity Additional Trend in India

Wind Installed Capacity (MW)

Solar Installed Capacity (MW) — Wind as % of Total RE — Solar as % of Total RE

Template South Asia Power Supply Position Report -Dashboard Utility

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy cooperation & Integration in South Asia-30th-31st August'2018Raiiv/Head-Technical/SARI/El/IRADE

South Asia Regional Power Supply Position

Daily Power Supply Position Report For Dated : 27.06.2019 (Date of Issue : 28.06.19)

A. Installed Capacity

(All Figures show values in MWs)

Sources\Country	India	Bangladesh	Sri Lanka	Bhutan	Nepal
Coal					
Gas					
Diesel					
Nuclear					
Hydro					
Renewable					
Total					

*Note: Installed Capacity figures indicate the grid connected Generation Capacity

B. Actual Generation

(All Figures show values in Mus)

Sources\Country	India	Bangladesh	Sri Lanka	Bhutan	Nepal
Coal					
Gas					
Diesel					
Nuclear					
Hydro					
Renewable					
Total					

C. Demand Met

Country ->	India	Bangladesh	Sri Lanka	Bhutan	Nepal
Max. Demand Met (MW) At (Time)					
Min. Demand Met (MW) At (Time)					
Energy Met (MU)					
Shortage (MU)					

*Note: Time period corresponds to the Local time of the respective countries

D. Frequency Profile

	India	Bangladesh	Sri Lanka	Bhutan	Nepal
Day Avg. Freq. (Hz.)					
Day Max. Freq. (Hz.)					
Day Min. Freq. (Hz)					

E. Diversity Factor

Regional Demand Diversity factor at Evening Peak (at 18.00 Hrs. IST)	
Regional Demand Diversity factor at Night Off Peak (at 03.00 Hrs. IST)	
Regional Demand Diversity factor during Day time (at 13.00 Hrs. IST)	

F. Rates and Volume Transacted at Power Exchange (IEX) on the previous day

Total Cleared Volume (MWH)	
Price Avg. RTC (Rs.₹/MWH)	
Price Peak (Rs.₹/MWH)	
Price Non-Peak (Rs.₹/MWH)	
Price Day (Rs.₹/MWH)	
Price Night (Rs.₹/MWH)	
Price Morning (Rs.₹/MWH)	

G1. Regional Power Transfer

From India To -> (+ve denotes export by India & -ve Import by India)	Bangladesh	Sri Lanka	Bhutan	Nepal
Energy (Mus)				
Max. Transfer in MW				

G2. Regional Power Transfer

From Bangladesh To -> (+ve denotes export by BD & -ve Import by BD)	Sri Lanka	Bhutan	Nepal	India
Energy (Mus)				
Max. Transfer in MW				

G3. Regional Power Transfer

From Sri Lanka To -> (+ve denotes export by S.L & -ve Import by S.L)	Bhutan	Nepal	India	Bangladesh
Energy (Mus)				
Max. Transfer in MW				

G4. Regional Power Transfer

From Bhutan To -> (+ve denotes export by Bhutan & -ve Import by Bhutan)	Nepal	India	Bangladesh	Sri Lanka
Energy (Mus)				
Max. Transfer in MW				

G5. Regional Power Transfer

From Nepal To -> (+ve denotes export by Nepal & -ve Import by Nepal)	India	Bangladesh	Sri Lanka	Bhutan
Energy (Mus)				
Max. Transfer in MW				

Demand Met in the Countries in South Asia Region

Details of the 'Demand Met' in MW in the different South Asian Countries on

(All figures show the Demand Met in MW)

Country -> Time (Hrs.)*	India	Bangladesh	Sri Lanka	Bhutan	Nepal
00:15					
00:30					
00:45					
01:00					
01:15					
01:30					
01:45					
02:00					
02:15					
02:30					
02:45					
03:00					
03:15					
03:30					
03:45					
04:00					
04:15					
04:30					
04:45					
05:00					
05:15					
05:30					
05:45					
06:00					
21:15					
21:30					
21:45					
22:00					
22:15					
22:30					
22:45					
23:00					
23:15					
23:30					
23:45					
24:00					
Maximum					
Ninimum					
Average					

*Note: Time period corresponds to the Local time of the respective countries

Inter – Regional Exchange of Power in South Asia Region

Details of Power Exchange on Inter – Regional Lines in South Asia Region on Dated

Line Details	From	То	Max. Export (MW)	Max. Import (MW)	Export (MU)	lmport (MU)	Net Export (MU)
Baharampur – Bheramara 400 KV AC D/C feeding to HVDC Back-to-Back link	India	Bangaldesh					
Surajmaninagar – Comilla 500 KV HVDC Back to Back Link (Currently operated at 132KV AC D/C)	India	Bangladesh					
Chukha HEP - Birpara 220 KV (3 circuits)	India	Bhutan					
Kurichu HEP - Geylephu -Salakati 132kV S/C	India	Bhutan					
Tala HEP- Siliguri 400kV HVDC (one ckt. via Malbase in Bhutan)	India	Bhutan					
Dhalkebar-Mujaffarpur (Currently operated at 220 kV and finally to be charged at 400 kV)	India	Nepal					
Kataiya — Kusaha 132KV AC S/C	India	Nepal					
Kataiya - Kusaha II 132KV AC S/C	India	Nepal					
Raxaul-Parwanipur 132KV AC S/C	India	Nepal					
Ramnagar-Gandak 132KV AC S/C	India	Nepal					
Tanakpur-Mahendranagar 132KV AC S/C	India	Nepal					
Kataiya Rajbiraj (Under Kosi Agreement) 33KV AC S/C	India	Nepal					
Jaynagar-Siraha 33KV AC S/C	India	Nepal					
Nanpara-Nepalgunj 33KV AC S/C	India	Nepal					
Sitamadi-Jaleshwor 33KV AC S/C	India	Nepal					
Raxaul-Birgunj 33KV AC S/C	India	Nepal					

Real Time Data from India

http://meritindia.in/

M Inbox - via1996@gmail.com - Gr X M Inbox (2) - viagraval@inde.org X 3 NERIT - Merit Order Despitch of X + - Ø X					
$\leftarrow \ \ \rightarrow \ \ \mathfrak{S}$ (\bigcirc Not secure meritindia	Lin			🖈 😝 i	
ININISTRY OF POWER Merit Order Despatch of Electricity for Rejuvenation of Income and Transparency					
POWER PROCUREMENT ON 24 Jun 2019					
	ALL INDIA POWER POSITION (MW) [CURRENT]				
DEMAND T MET GE 1,71,520 MW 1,20	HERMAL GAS NERATION GENERATION 1,846 MW 5,731 MW	NUCLEAR GENERATION 4,766 MW	HYDRO GENERATION 21,462 MW	RENEWABLE GENERATION 19,707 MW	

Real Time Data from Nepal

https://www.nea.org.np/

4 Non - via1996@gnation - C × M kbox (0, viagoved@valleor) × O NERT - Mett Order Departh → × O New Dedricty Authority (= × +	- 0 ×
मित्र विद्युत प्राधिकरण Nepal Electricity Authority	
🖬 Noo- Half/Sidgeslaan 🗧 🛪 M. Macló Hagaveländeur, 🕷 O. NENT. Mail Order Desprish 🖉 🕷 🕒 Neur Deckley Articity (💷 🗙 🔶	- a ×
+ C • https://www.nea.org.np	6 x 🙆
Nepal Electricity Authority	6 ¢ \varTheta
DEVICITIES INPORT : 10782 MAIN INTER	IRI
🗇 नेपाल विद्यत पाधिकरण 👒	
Nonal Electricity Authority	

Real Time Data from Bhutan

http://bpso.bpc.bt/

Real Time Data from Bangladesh

http://www.sreda.gov.bd/

https://www.pgcb.org.bd/PGCB/Tempages/prover_exchange.php

Sample Report – Year wise/Source wise Details of installed Gen. Capacity

Net installed electricity generation capacity in Germany

Sample Report – Daily Source wise Generation Composition

Electricity production in Germany in March 2019

Sample Report – Daily Cross-border transactions during a month

Electricity production in Germany in August 2018

🖶 print () usage tips

Source	Power (GW)	Date	Power (GW)	Date
Austria	-3.662	11.08.18 15:30	0.999	03.08.18 22:30
Switzerland	-3.067	27.08.18 01:30	2.766	22.08.18 22:30
Czech Republic	-1.738	10.08.18 15:30	1.379	26.08.18 08:30
Denmark	-2.134	12.08.18 12:30	1.909	18.08.18 11:30
France	-2.983	26.08.18 15:30	4.121	13.08.18 10:30
Netherlands	-4.394	05.08.18 20:30	-0.059	09.08.18 09:30
Poland	-2.14	10.08.18 14:30	-0.294	03.08.18 22:30
Sweden	-0.494	12.08.18 15:30	0.608	06.08.18 01:30

Sample Report – Daily Gen. Composition during a typical week

Electricity production in Germany in week 14 2019

Thank You

Theme Presentation/Session-2/"Policies/Regulations and Institutional Mechanisms for Promoting Energy Cooperation & Cross Border Electricity Trade in South Asia"/ Regional Conference on Energy Cooperation & Integration in South Asia-30th-31st August 2018Rajiy/Head-Technical/SARI/EL/IRADE

India-Nepal : Proposed Cross Border Transmission Line

Name of the Link	Key Features of the Line	Associated generation projects
Attariya-Bareily	Single line of double circuit 400kV quad Moose transmission line of distance about 140 KM	From export-oriented HPP in the Mahakali, Karnali and Seti corridors in Zone-1 area of Nepal
Dododhara– Bareily	2 No. of double circuit 400kV quad Moose transmission line of distance about 200 KM	From export-oriented HPP in the Mahakali, Karnali and Seti corridors in Zone-1 area of Nepal
Phulbari–Lukhnow	2 No. of double circuit 400kV quad Moose transmission line of distance about 200 KM	Evacuating the power from Nalsyau Gad, Bheri Corridor in Zone-2 of Nepal to Lukhnow, India
New Butwal– Gorakhpur	2 No. of double circuit 400kV quad Moose transmission line of distance about 125 KM	Evacuating the power from Marsyandi, Kaligandaki and Gandaki Corridor in Zone-3 of Nepal to Gorakhpur
Dhalkebar – Muzzafarpur	2 No. of double circuit 400kV quad Moose transmission line of distance about 130 KM	evacuating the power from Khimti, Tamakoshi and Dudhkoshi Corridor in Zone-4 of Nepal to Muzafarpur
Inaurwa – Purnea	2 No. of double circuit 400kV quad Moose transmission line of distance about 110 KM	evacuating the power from major corridor likes Arun and Koshi in Zone-5 of Nepal to Purnea, India