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ABSTRACT
Emerging distributed energy resources (DERs)—such as solar photovoltaics (PV), battery energy storage 
systems (BESS), and electric vehicles (EVs)—are expected to increase substantially in India in the coming 
years following policy-driven targets of the Government of India to modernize its electricity system, 
reduce greenhouse gas emissions (GHGs), and improve air quality. These emerging technologies can pose 
challenges to distribution utilities, forcing overhauls in planning and operational practices. They can also 
create challenges in power system infrastructure planning and cause more frequent system operational 
violations (e.g., network voltage bounds and loading thresholds) if not properly integrated.

The impacts on the localized power distribution grid from these emerging technologies manifest in 
increased infrastructure investments and erratic shifts in demand patterns. These impacts are not yet well 
understood, and analytic solutions are not readily available. To address these challenges, the National 
Renewable Energy Laboratory (NREL), in collaboration with BSES Rajdhani Power Ltd. (BRPL), 
developed an advanced power distribution system impact analysis framework of BRPL’s distribution 
system. This framework helps analyze the readiness of the power distribution network to accommodate 
emerging technologies and the potential opportunities they might introduce. The framework has been 
predominantly set up to evaluate distributed PV, BESS, and EVs. In this collaboration between NREL 
and BRPL, we developed and evaluated the framework on two distribution feeders in the BRPL territory 
for various scenarios of BESS and EVs. BESS are evaluated for their effectiveness on the grid to mitigate 
present and future feeder overloading scenarios, and they are subsequently analyzed for their costs 
compared to the costs of traditional upgradation measures. Scenarios include assessing the effects of EV 
density on grid infrastructure upgrades and interlinking EV management with BESS integration.
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Executive Summary 
Context and Problem Descriptions 
Emerging distributed energy resources (DERs)—such as solar photovoltaics (PV), battery energy storage 
systems (BESS), and electric vehicles (EVs)—are expected to increase substantially in India in the 
coming years following policy-driven targets of the Government of India to modernize its electricity 
system, reduce greenhouse gas emissions (GHGs), and improve air quality. These emerging technologies 
can pose challenges to distribution utilities, forcing overhauls in planning and operational practices. They 
can also create challenges in power system infrastructure planning and cause more frequent system 
operational violations (e.g., network voltage bounds and loading thresholds) if not properly integrated. 

The impacts on the localized power distribution grid from these emerging technologies manifest in 
increased infrastructure investments and erratic shifts in demand patterns. These impacts are not yet well 
understood, and analytic solutions are not readily available. To address these challenges, the National 
Renewable Energy Laboratory (NREL), in collaboration with BSES Rajdhani Power Ltd. (BRPL), 
developed an advanced power distribution system impact analysis framework of BRPL’s distribution 
system. This framework helps analyze the readiness of the power distribution network to accommodate 
emerging technologies and the potential opportunities they might introduce. The framework has been 
predominantly set up to evaluate distributed PV, BESS, and EVs.  

Methodology 
In this collaboration between NREL and BRPL, we evaluated the framework on two distribution feeders 
in the BRPL territory for various scenarios of BESS and EVs. BESS are evaluated for their effectiveness 
on the grid to mitigate present and future feeder overloading scenarios, and they are subsequently 
analyzed for their costs compared to the costs of traditional upgradation measures. Scenarios include 
assessing the effects of EV density on grid infrastructure upgrades and interlinking EV management with 
BESS integration. Key outcomes of this research are as follows: 

• Developed and validated an accurate, scalable end-to-end framework for evaluating the impacts of 
emerging technologies (BESS, PV, and EVs) on power distribution systems 

• Developed models to characterize utility-scale BESS operations and economics across different use 
cases and developed methods to analyze isolated and stacked benefits of BESS with different control 
patterns  

• Characterized various EV technologies deployed at different penetration levels for public, private, 
and commercial vehicles in terms of their aggregate demand profiles  

• Identified and computed a suite of grid-readiness metrics for techno-economic assessments of 
network operation impacts under BESS control use cases and EV penetration scenarios 

• Defined upgrade requirements for network infrastructure to mitigate possible violations of grid-
readiness metrics and reduce potential customer service interruptions caused by an increase in overall 
system loading from EVs.  

The work conducted for this project leverages many tools and capabilities unique to NREL. Data 
provided by BRPL—including feeder head and distribution transformer loading data along with all the 
technical specifications and schematics of two feeders in Delhi—underpin the model development and 
validation work. 

After using specialized algorithms to improve the quality of the data, the distribution transformer profiles 
are used to perform multiyear, quasi-static time-series power flow analyses on detailed three-phase feeder 
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models. NREL’s high-performance computing (HPC) system is leveraged to allow for the parallel 
analysis of many potential future scenarios. Additionally, the developed architecture provides a reusable 
framework to analyze the impact of integrating increasing numbers of EVs and utility-scale batteries into 
distribution networks.  

Results 
Results discussed in this report show the effective application of the developed framework. Included in 
are critical building blocks for the analyses, such as aggregated EV demand profiles and preliminary 
voltage impacts. Energy storage integration for peak-shaving applications are also evaluated. These 
platforms are then integrated for simulation on NREL’s HPC system for subsequent cost-benefit analyses. 
Using the simulation results and corresponding impact-metrics analyses, network upgrade 
recommendation models are developed and assessed for two Delhi feeders and the costs of an emerging 
technology upgradation approach is compared to a traditional upgradation approach.  

These types of assessments will help BRPL and other utilities gauge the readiness of their feeders for 
integrating increasing numbers of EVs and energy storage as the distribution sector continues to 
transform. 

The following four topics are investigated in this study, which have relevance for policymakers, utility 
planners and other decision makers beyond the case study analyzed:  

• Reusable framework for distribution utilities 

• Impact of BESS on distribution system losses  

• Minimally sizing and controlling BESS for maximum benefits 

• Essential and cost-effective pathways to deploy BESS (staged vs. all at once). 

Scalability of reusable framework for distribution utilities: This effort developed a reusable 
framework for distribution utilities to assess the impact of emerging technologies (BESS, EV, and PV) on 
their power distribution grids. The framework contains three layers, as shown in Figure ES-1. The first 
and base layer is the distribution feeder topology assessment. The second layer is for distributed 
generation, such as rooftop PV or any generation resources commonly referred to as a DER. The third 
layer is dedicated to BESS. The fourth layer is built to include EVs. Overall, all four layers interact and 
provide a comprehensive assessment of challenges and opportunities from emerging technologies.  

 
Figure ES-1. Modular layers in our reusable distribution analysis framework 
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This framework was simulated on NRELs HPC, and simulation runs exceeded 500 hours; however, the 
computational requirements for using this framework are not beyond a typical server or modern laptop. It 
is expected that BRPL engineers could run distribution feeder operation scenarios without the need for 
upgrades or simplification of models. 

Analysis using this framework can be conducted outside of a supercomputing system or by purchasing 
software licenses given that we would like many utilities and other interested users to have access to this 
type of analysis. The solution framework is built entirely on open-source platforms and programming 
language.  

Impact of BESS on distribution system losses: The main case study performed in this effort is on 
helping distribution utilities understand the possibility of deferring a distribution transformer upgrade by 
deploying a BESS in the neighborhood. Hence, the presiding question was understanding how a BESS 
affects system losses. Distribution transformers are generally designed to operate with maximum 
efficiency at or near 70% of rated power—in other words, transformer efficiency is affected by its 
loading. Appropriate battery charge/discharge settings on the test distribution feeders lead to reduced 
system losses. The reason being battery energy storage successfully displaces the transformer loading 
from less efficient part of the load curve to more efficient part of the load curve. Figure ES-2 depicts from 
our research results that for selected distribution transformers, combined system losses reduced when the 
BESS was performing peak shaving. 

 

 
Figure ES-2. Impact of different battery control strategies on system losses  

Minimally sizing and controlling BESS for maximum benefits: The peak-shaving mode of BESS 
requires the service operator to provide trigger values for peak shaving and base loading. The BESS will 
discharge power into the grid if the total power demand at the measured point—in this case, the 
distribution transformer—is greater than the peak-shaving upper reference limit. Conversely, the BESS 
will charge if the total power consumption at the measured point is less than the base-loading limit. It is 
important to ensure that charging the BESS occurs during the baseload loading periods (i.e., the valleys) 
to avoid overloading the distribution transformer during peak periods. After simulating various use cases, 
Figure ES-3 was generated to showcase the ability to achieve upgrade deferral with appropriate battery 
controls. Figure ES-3 depicts that for a certain distribution transformer, two different peak-shaving 
battery trigger points had varying impacts on overloading instances over 10 years of simulation. 
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Figure ES-3. Count of 100% loading instances per year for selected transformer for different 
battery peak-shaving trigger points 

Note: BESS 70 65 represents a control scheme where the battery operates to keep the loading of the distribution 
transformer between 70% and 65%. Simillarly for BESS 70 50, the battery operates to keep the distribution 

transformer between 70% and 50%. 

Essential and cost-effective pathways to deploy BESS (staged vs. all at once): BESS are typically 
sized and deployed as full size; however, as a research exercise, we created three deployment scenarios 
(as shown in Figure ES-4): (1) standard deployment during the first year of the project (3,600 kWh), (2) 
staged deployment to meet the battery requirements, and (3) staged deployment by adding 200 kWh every 
year. The results of the staged deployment scenarios showed that capital costs can be 9.7% less for 
Scenario 2 and 13% less for Scenario 3 (Figure 87). Section 6.3.2 contains detailed descriptions on how 
we reached this result. 

 
Figure ES-4. Capital cost comparison for different battery deployment scenarios 

These topics are addressed throughout this report. Chapter 7 summarizes the notable outcomes.  
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1 Introduction 
In addition to behind-the-meter photovoltaics (PV) and battery energy storage systems (BESS), the 
integration of electric vehicles (EVs) is expected to increase substantially in India in the coming years as 
a result of clean energy policy targets from the Government of India. The impact of such rapid growth of 
distributed energy resources (DERs) on the electric grid needs to be understood and quantified to 
reinforce informed planning and ensure reliable grid operation. To address this, the National Renewable 
Energy Laboratory (NREL), in collaboration with BSES Rajdhani Power Ltd. (BRPL), has developed an 
analysis framework that uses state-of-the-art modeling techniques to anticipate the potential impacts on 
distribution systems in an evolving energy sector. This work is conducted under a broader program, 
Greening the Grid, which is an initiative co-led by the Government of India’s Ministry of Power and the 
United States Agency for International Development. 

This report presents initial findings of the research collaboration between NREL and BRPL and addresses 
key research questions about the integration of these emerging technologies onto BRPL’s distribution 
grid. The objective is to build a framework for analyzing the economic and technical benefits and 
challenges of the integration of EVs and BESS and to help optimize infrastructure development costs for 
BRPL. 

1.1 Background 
Reducing BESS costs and increased growth in EV penetration are the primary drivers of this research 
collaboration. BRPL anticipates installing BESS in their distribution transformers (DTs) and a rapid EV 
rollout soon. BESS deployments and EV rollouts are encouraged by national- and state-level policies to 
increase renewable integration and reduce emission intensity.  

This framework developed by NREL and BRPL captures the combination of this simultaneous evolution 
(BESS and EV) in distribution system planning so that potential grid impacts can be anticipated, and cost-
effective measures can be taken to address potential issues. In addition to developing the framework, 
NREL adapted grid-readiness metrics that help characterize the scale of system impacts on various 
measures of grid health.  

The cost-benefit analyses of BESS integration are performed on two feeders in BRPL’s service territory, 
chosen for their potential to host a BESS pilot project or strategic investment. Storage technologies are 
expensive assets and have the potential to provide multiple services to the grid. NREL identifies value 
streams of utility-scale, grid-interactive BESS for load-leveling applications on transformers, which are 
similarly applicable across diverse use cases (such as capacity firming and energy arbitrage) for local 
grid-support services. Along with BESS, realistic models of various EV technologies (such as e-
rickshaws and plug-in EVs) are deployed at various penetration levels for public, private, and commercial 
vehicles. These models will translate the EV fleet on the streets into grid-connected temporal load curves. 
For techno-economic assessments of grid impacts, this framework computes suites of grid-readiness 
metrics under different BESS use cases and EV integration scenarios. 

Under this collaborative effort with the United States Agency for International Development and BRPL, 
NREL achieved the following project objectives: 

• Developed and validated an accurate and scalable end-to-end framework for simulating various 
present and future scenarios of the selected feeders 
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• Developed models to characterize utility-scale BESS operations and economics across different use 
cases and developed methods to analyze isolated and stacked benefits of the BESS with different 
control patterns  

• Characterized various EV technologies deployed at different penetration levels for public, private, 
and commercial vehicles in terms of their aggregate demand profiles  

• Identified and computed a suite of grid-readiness metrics for techno-economic assessments of 
network operation impacts under BESS control use cases and EV penetration scenarios 

• Defined upgrade requirements for network infrastructure to mitigate possible violations of grid-
readiness metrics and reduced potential customer service interruptions caused by an increase in 
overall system loading from EVs.  

These objectives were designed to realize combined value streams of the BESS, which requires careful 
consideration of use case prioritization, double counts, and time- and location-based constraints. From 
these analyses, decision makers might benefit from understanding the economic impacts of operational 
decisions of service providers. Without a robust understanding of trade-offs, during peak periods, for 
instance, service providers and operators might prioritize load leveling irrespective of how lucrative the 
energy market prices are within this period. For EV integration scenarios, understanding where, when, 
and how much consumers charge their vehicles will assist the utility in developing realistic charging-
station demand profiles and projections to provide a robust solution for mapping distributed and 
centralized charging concepts within their service territory. Based on these EV and baseload projections, 
utilities could develop their network upgrade plans. To that end, NREL carried out sensitivity analyses on 
possible network upgrades across BESS use cases with stacked benefits valuations specific to the selected 
distribution feeders. 

1.2 Analysis Approach 
NREL developed robust simulation-based methodologies and analytic methods for a techno-economic 
evaluation of grid-interactive energy storage assets across diverse use cases while combining the 
integration of EV technologies in two selected feeders of the BRPL network. This approach also required 
maintaining grid reliability and resilience.  

This framework can help utilities analyze their network readiness for emerging technologies, the impact 
of EV penetration on the grid, and the potential solutions introduced by front-of-the meter BESS. 
Together with technical benefits, this framework allows for an assessment of the economics of 
conventional (lines/transformers) and advanced network upgrades (storage). Case studies for this 
framework are designed around New Delhi feeders under various levels of projected growth in EV 
penetration and charging scenarios. 

1.3 Use Cases 
This research evaluates the interactions between BESS and EV technologies across diverse use cases and 
penetration levels, as shown in Figure 1. 
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Figure 1. Different use cases and scenarios to consider for the EV/BESS pilot 

To obtain all combinations of these technologies, NREL performed the study under a bassline and three 
major use cases: 

1. Baseline: The baseline scenario uses the existing network architecture and feeder loading, which 
helps differentiate the changes caused by new technologies on the local grid in the subsequent 
simulation scenarios. 

2. Traditional upgrades: This use case considers line or transformer upgrades as needed to prevent 
network violations. Yearly load growth can exacerbate network operation and cause thermal 
violations for these devices. 

3. BESS and control applications: This use case considers utility-scale BESS, sized as 
recommended by BRPL, on the baseline model. The intent is to analyze and evaluate the 
achievable value streams from the integrated energy storage asset. Peak shaving is considered 
with staged (yearly addition of battery packs) and fixed deployment strategies. EVs are not 
included in this use case. 

4. EVs: Varying levels of EV penetration are considered in this use case. Two subcategories of this 
use case are:  

A. With peak-shaving BESS 

B. Without BESS (baseline and with traditional upgrades).  

Each subcategory considers three EV penetration levels: low, moderate, and high. Initial 
assumptions for these levels come from the total number of vehicles within the territories of the 
given feeder(s). Because these scenarios represent future scenarios, corresponding load growth 
and expected PV are also considered. 

These use cases are included as layers on base feeder models, as shown in Figure 2. Any existing DERs 
can be integrated in the net load layer. 



 

4 

 
Figure 2. Various layers for modeling loads, EVs, and other DERs for centralized charging concept 
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2 Distribution Feeder Modeling 
This chapter describes the methodologies used for building analyses-ready feeder models, including 
allocating and cleaning data for the EV integration and BESS impact studies. Two distribution feeders 
(Feeder 1 and Feeder 2) in Delhi were identified by BRPL and were therefore selected as case studies to 
better understand the impact of BESS and EVs. Using the topological and network configuration data 
provided by BRPL, NREL modeled the network in OpenDSS, an open-source software for simulating 
electric distribution systems.  

2.1 Distribution System Analyses Tool 
For the purpose of performing distribution system power flows OpenDSS is used. The OpenDSS is a 
comprehensive electrical power system simulation tool for electric utility power distribution systems. It 
supports nearly all frequency domain (sinusoidal steady‐state) analyses commonly performed on electric 
utility power distribution systems. In addition, it supports many new types of analyses that are designed to 
meet future needs related to smart grid, grid modernization, and renewable energy research. Primary 
purpose to choose OpenDSS is that OpenDSS is designed to be scalable so that it can be easily modified 
to meet required needs as opposed to other off-the-shelf solutions such as Synergi, CYMEDIST. 

2.2 Distribution Network Modeling 
The building blocks of this feeder analysis framework require multiple data sets to be compiled into a 
usable distribution network model, as shown in Figure 3. The network topology is created from the 
geographic information system (GIS) database that manages all network assets. Equipment databases are 
used to identify and model attributes of different network assets, such as distribution lines, transformers, 
capacitor banks, and existing PV systems. Demand is also a critical component of this model. Base 
demand profiles are created from supervisory control and data acquisition (SCADA) data and consumer 
energy consumption patterns. 
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Figure 3. Network model development for the planning framework 

In many instances, utilities do not have real electric models for network segment modeling, simulation, 
and power flow studies. Instead, they maintain a GIS database to manage network assets for their service 
territories. A pivotal step to enable accurate characterization of feeder operations is to convert the GIS 
data into a format suitable for OpenDSS. GIS-based shapefiles provide visualization for the feeder 
topology and typical path and engineering design of wires and towers (Stephen, 2014); however, a critical 
issue with GIS-based network diagrams is in the accuracy of network segment connectivity. For example, 
line segments that appear to be connected in GIS visualization could be separated by a minute distance, 
which might not be obvious to visual perception and therefore might result in an unsuitable model for 
power flow analysis (Espinosa, 2015). 

2.2.1 Converting Geographic Information System Files to a Connected Network 
The distribution network segments are represented within the GIS database by layers, which have 
different numbers of features (i.e., attributes) and geometry types, as shown in Table 1. These data layers 
are processed in QGIS software, an open-source platform to analyze and visualize geospatial information. 

Table 1. Features and Types of Network Segments 

Layer ID Layer Name Number of Features Geometry Type 

0 Busbar 69 Line string 

1 Circuit breaker 23 Point 

2 Distribution transformer 7 Point 

3 Extra-high voltage lines 1 Polygon 

4 High-tension cable 21 Line string 

5 Low-tension cable  27 Line string 
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6 Overhead conductors 165 Line string 

7 Substation 7 Polygon 

8 Switch 60 Point 

The QGIS software uses line strings to represent line segments in the network, some of which are 
polylines, as shown in Figure 4 making it difficult to access all the features of each segment. Also, these 
polylines, which are continuous lines with one (or more than one) line segments, are represented as a 
single object in QGIS. These polylines have a single source and end point coordinates, which do not fully 
represent them and are therefore insufficient to build electrical models in power network modeling and 
simulation tools.  

 

Figure 4. Line string example of feeder sections with multiple polylines 

To address the issue with polylines, the following procedure was implemented in QGIS: 

1. Explode each line layer. This takes each line and creates a set of new lines representing segments 
of the original line. The new lines have a start and an end point without intermediate nodes. 

2. Export the geometry of the exploded layer to nodes and attribute files using the MMQGIS plugin. 
The resulting line segments from Step 1 have nodes with source and end coordinates.  

3. Add the coordinates of all the line layers from Step 2 to form the network line topology as shown 
in Figure 5 and Figure 6 for Feeder 1 and Feeder 2, respectively. 
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Figure 5. GIS-based reconnection model for Feeder 1  

 
Figure 6. GIS-based reconnection model for Feeder 2  

2.2.1.1 Network Creation 
This section describes the feeder reconnection process from the GIS-based shapefiles using node 
coordinates obtained from the distribution utility coupled with the corresponding attribute table to 
perform the following operations using the NetworkX package. 

2.2.1.1.1 Edge Creation 
To create edges for nodes with various line layers of the feeder—such as underground, overhead, low-
tension, and high-tension—the edge parameters are defined to capture the different line characteristics. 
Some considered parameters include capacitance, continuous line ratings, positive-, negative-, and zero- 
sequence impedances. Cables used for edge creation are classified according to their size and voltage 
level (e.g., 11 kV, 415 V). Also included in this class are distribution transformers for connecting nodes, 
whose parameters are defined such as the connection types, windings, maximum and minimum taps, and 
percentage load and no-load losses.  

2.2.1.1.2 Feeder Head Location 
The feeder head is determined by identifying any node within the vicinity of the substation with only one 
neighbor connected. This procedure was implemented by constructing a rectangle with the substation 
nodes and then identifying the node with one neighbor connected to it. 
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2.2.1.1.3 Adding Nodes and Merging Neighboring Nodes 
The next step is combining the nodal elements—such as the circuit breakers, distribution transformers, 
and switches—with their properties in the attribute table for the respective feeders. For circuit-breaker 
nodes, attention was given to never use bus bars as an edge parameter because they are internally 
connected, as shown in Figure 7. Figure 8 shows distribution transformers connecting overhead lines for a 
certain portion of the feeder. 

To determine if nodes should be merged, the Euclidean distance metric (D) was used to compute the 
distance between nodes. Nodes with D < 0.001 are considered neighboring nodes and are thus merged 
into a single node. 

 
Figure 7. Bus bar and circuit-breaker connection 

2.2.1.1.4 Remove Loops in Feeder Layout 
There is a high possibility of forming loops or cycles in the process of network creation. For instance, 
circuit-breaker nodes can easily form a loop that causes power flow to be trapped in a section of the 
network with a high tendency to increase network losses. To remove these cycles, edges connecting 
circuit breakers to create loops are removed from the network topology. 

Because power flow cannot run in a disconnected network, it is important to compute the number of 
connected and disconnected components. To determine the main connected components, a list of 
connected components generated as subgraphs was created. Not all disconnected line segments or nodes 
can be fixed automatically or algorithmically. Reconnecting components that are disconnected might 
require human intervention to decide whether to connect islanded components. In some cases, axis 
coordinates are flipped to connect disconnected line segments.  

 
Figure 8. Distribution transformers connecting overhead lines for a certain portion of the feeder 

The complete procedure for translating GIS data to the OpenDSS format is illustrated in Figure 9. The 
reconnection models are updated with a device data sheet to create the OpenDSS model, with the load 
profiles as inputs to the OpenDSS model. 
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Figure 9. GIS-based data set translation to OpenDSS model 

2.3 Distribution System Loading Data Sets 
We received three loading data sets from BRPL: (1) three-phase, three-wire, 2-W metered data obtained 
at both 11-kV feeder heads; (2) three-phase, three-wire, 3-W metered data obtained at all distribution 
transformers; (3) and monthly customer billing data.  

2.3.1 Feeder Head Loading Data 
BRPL shared feeder head loading data sets for Feeder 1 and Feeder 2 that included time series of import 
and export readings, Phase A and Phase C voltage readings (kV), current readings (A), demand (kW), the 
power factor, and the time stamp. All these data were sampled at a time resolution of 15 minutes and span 
1 year: from October 30, 2017, to September 30, 2018. 

Figure 10 shows the combined loading of Feeder 1 and Feeder 2. Peak loading is observed in the evening 
hours during the summer months, and the lowest loading conditions are during the early hours during the 
winter months. 

 
Figure 10. Surface plot of aggregate demand on Feeder 1 and Feeder 2 showing diurnal and 

seasonal variability (left) and heat map of aggregate demand on Feeder 1 and Feeder 2 showing 
diurnal and seasonal variability (right) 

2.3.2 Distribution Transformer Loading Data 
NREL received seven distribution transformer loading data sets for both Feeder 1 and Feeder 2, for a total 
of 14 distribution transformer loading profiles. Each data set comprises time-series data that include the 
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active power, reactive power, and voltage on each of the three phases of the secondary distribution lines 
spanning the same year as the feeder head time-series data. A time series that indicates outages is also 
included. 

2.3.3 Customer Billing Data 
In addition to the feeder head and distribution transformer loading time-series data sets, BRPL provided 
the customer billing information for all customers serviced by each distribution transformer.  

2.3.4 Method for Cleaning Distribution Transformer Data 
The distribution transformer data are cleaned to enable the quasi-static time series simulations. Once 
cleaned, the time series are normalized relative to the maximum loading condition observed on each 
distribution transformer. The data cleaning process is described in the following sections.  

2.3.4.1 Data Cleaning Process 
The data were analyzed to decompose the typical trends in the loading profiles from the abnormal 
variabilities including measurement errors. Typical trends are a composite of several timescales; load 
variability features subhourly, hourly, diurnal, and seasonal dynamics. Here, we focus on the daily trend, 
which is characteristic for each month of the year; and the seasonal variability, which is characterized by 
a daily relative drift from the mean monthly value. 

To obtain the typical daily profile for each month, the loading observed during each half-hourly time 
point is averaged with all the same half-hourly values within the month (e.g., all points at 1:30 a.m. in 
April are averaged for a single value for April, 1:30 a.m.). This process is repeated for each month in the 
year, producing a profile that is used as a template, or donor, profile to fill missing time points. The donor 
profiles for Feeder 1 and Feeder 2 are shown in Figure 11 and Figure 12.  
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Figure 11. Donor profiles for each distribution transformer for Feeder 1 during each month 

 
Figure 12. Donor profiles for each distribution transformer for Feeder 2 during each month 

Some notable consequences of using a donor profile to fill in the missing data include that the data at the 
boundaries of the domain of the missing data might feature a step discontinuity. A smoothing technique is 
used to prevent this. Additionally, if a single donor profile is used repeatedly to fill consecutive days, 
those days would not feature seasonal variability and inter-monthly trends. To incorporate more natural 
variability into the data sets when there are large gaps, the daily mean drift from the monthly mean value 
interpolated to a 30-minute resolution and expressed as a percentage is used as an alternative to duplicate 
days being repeated. The filled data taken from the donor profile are then scaled by this drift factor.  

The effect of the daily mean drift and smoothing is shown in Figure 13. This figure shows an instance 
where there were several consecutive data with afflicted data points that were replaced by synthetic data. 
Although each day has a similar profile, the scale and absolute load differ slightly throughout the 
synthetic profile.  
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Figure 13. Purely synthetic data filled using the fill processes for DT 29601126 in Feeder 1 

The result for each distribution transformer represents a single, serially complete time series that is 
normalized relative to the maximum loading condition for each transformer. All the various afflictions 
were removed and replaced with the donor data rescaled by the daily mean drift relative to the monthly 
mean. In cases where no donor profile data were available, the mean of the remaining distribution 
transformer profiles was used. Again, a smoothing method was used to avoid step discontinuities. 

2.3.4.2 Initial Validation 
To validate the data cleaning method, some of the available data were removed so that synthetic data 
could be compared against the real data. The residuals between the synthetic data and the real data were 
calculated to ascertain the accuracy of the synthetic data. The distribution of these residuals normally has 
a mean bias error of -0.036, or -3.6%, as shown in Figure 14. Figure 15 shows the distribution transformer 
loading profile for DT 29601126 after this data filling method has been applied, and the performance of 
this method is shown in the green traces (filled in synthetic data) compared with the black ones (real 
data). 
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Figure 14. Distribution of residuals obtained by comparing the synthetic data to the real data 

 
Figure 15. Loading profile for DT 29601126. The green trace represents data that are synthetic and 

for which real data are available; the red trace represents data that are purely synthetic, i.e., no 
real data are available. 

2.4 Load Allocation 
Once the feeder topology has been defined, the next step is to accurately define the secondary loads. This 
is required because the feeder load along with the circuit impedance will define the power flows. 
Determining these customer peak load values is both critical and challenging because advanced metering 
infrastructure and SCADA data are, at this time, usually only available for the substation or, at best, for 
the distribution transformers, but not for individual customers. To add to this challenge, secondary 
customers might be moved to different distribution transformers because of changes in demand or 
network upgrades during the study period. These changes might not necessarily get updated in the 
utility’s GIS, and secondary customer locations might not have been mapped at all. This section describes 
a method to capture the phase customer load once the per-phase impedance of each circuit component is 
accurately modeled using the methodology described in the previous section.  
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Three data sources were available for the load profiles: (1) SCADA data for the feeder head (66/11-kV 
transformer), (2) the distribution transformers (11/0.433-kV transformers), and (3) monthly kWh values 
from the billing data for each of the 12 months considered in the study for all customers downstream of 
the distribution transformers. No information was available for the geographic coordinates of each 
customer or to which phase they were connected. The following section describes the process for 
identifying locations and peak load values for all secondary connected customers and validating the 
resulting customer loading profiles. 

2.4.1 Load Allocation Using Individual Distribution Transformer Data 
We use the peak-loading condition obtained from each distribution transformer’s 30-minute resolution 
loading profiles to help allocate loads to the secondaries. This is done by using a known parameter—
phase voltages—to iterate through a power flow model until loading estimates produce the target voltage. 
Few distribution transformers experience peak demand at the same time points; therefore, multiple time 
points corresponding to each distribution transformer’s peak-loading condition were analyzed and 
iterated. The following sections describe the algorithm used and the initial assumptions.  

Because of data issues, the voltage drops from the feeder head to the distribution transformer secondaries 
obtained from power flows on the feeder model did not match with the actual voltage measurements. This 
is because the same primary cable was supplying the load for all distribution transformers from the feeder 
head, so if the overall loading differed because of missing data, the voltage drops would also be different. 
Thus, it was essential to develop an approach to allocate loads to distribution transformer secondaries that 
could generate the same voltage drops as observed in the measurements while ensuring that the 
distribution transformer peak loading and phase imbalances are accurately captured. 

2.4.1.1.1.1 Using Evolutionary Algorithm for Load Allocation 
The voltage drops along a line are based on the real and reactive power flows. The values of these flows 
are dependent on the system impedance, which had already been captured using the GIS data and 
component specification sheets, and the values of the secondary loads and power factors on each phase. 
The approach adopted was to optimally allocate the secondary loads to each distribution transformer at its 
peak-loading time point using an evolutionary algorithm. An evolutionary algorithm is a generic 
population-based metaheuristic optimization algorithm.  

In this approach, each distribution transformer was allocated optimal loads separately. The per-phase load 
and power factor values of DTopt (DT being allocated optimal loads), were chosen using the evolutionary 
algorithm at its peak-loading condition, tp. Throughout the optimization process, the per-phase load and 
power factor values of all other distribution transformers in the feeder were kept fixed at the same values 
as given in their loading profiles at tp. If any of these inputs were not available, the following assumptions 
were used to fill in the missing values: 

• If the measured loading kW value was zero for any one phase of a distribution transformer, the sum 
of the other two phases was equally divided in all three phases. 

• If a load’s kW value was zero or negative (bad data), or if the values were not available for all three 
phases, then the distribution transformer was assumed to be 50% loaded. 

• If the loading values were not available for all three phases of DTopt, then the evolutionary algorithm 
could choose loading values from ±25% of its rating, else bounds were kept as ±25% of its actual 
peak-loading value. 

• If voltage measurements were not available for one phase, then a reasonable value based on the other 
two phases was applied. 
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• If none of the voltages were available, or if they were negative or much lower than nominal, then a 
value of 1 p.u. or slightly less than the feeder head value was assumed. 

• Similarly, if power factor values were not available for one phase, a reasonable value based on the 
other two phases was applied; if none of the values were available, unity power factor was assumed. 

Once these missing values were filled in, the following evolutionary algorithm steps were implemented to 
get the optimal loads: 

• The feeder head voltage in the OpenDSS models are set to the same values as observed in the feeder 
head SCADA data for tp. 

• The initial population was then generated for DTopt; here, initial population means a set of values for 
the loads and power factors for each phase of DTopt. These values were generated from within the 
specified bounds. The load kW values could be chosen from within ±25% of the measured kW values 
at tp. The power factor values could be chosen from (0.8,1), typical residential power factor values. 
The distribution transformer tap positions were not continuous and could be chosen from only seven 
allowed positions (0.9, 0.925, 0.95, 0.975, 1.0, 1.025, 1.05), as given in the distribution transformer 
specification sheets. 

• The initial population consisted of multiple sets of values, and each set was used to evaluate the 
fitness function. The fitness or the objective function was the squared sum of differences between the 
target (VT) and actual (VA) voltages for each phase of DTopt. The target voltage was read from the 
measurements at tp, as shown in Figure 16. The actual voltages were obtained by attaching lumped 
loads at the secondaries of DTopt, with kW and power factor values taken from the initial population 
sets. 

Figure 16. Initial and target voltages from distribution transformer measurements 

The set that gives the least value of the objective function is used to generate the next generation of load 
kW and power factor values. The DTopt secondary loads are replaced with these values, and the objective 
is evaluated again. This process is repeated until the difference between the last and current iteration is less 
than the specified tolerance. The process flowchart is shown in Figure 17. This process is applied to each 
distribution transformer to generate the optimal peak-load kilowatt, power factor, and tap position values.  

 

 
METER NO DATE TIME P B_PH P Y_PH P R_PH VBV VYV VRV 

29XXX 10/1/2017 241.5 227.7 154.1 245.41 242.88 244.95 

 

initial voltages target voltages 
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Figure 17. Flowchart of load allocation using evolutionary algorithm 

Figure 18 and Figure 19 show a comparison of voltages obtained using this modified approach. The 
optimal voltages exactly match the target voltages for most distribution transformers and are closer to the 
target voltages than the initial voltages for others. The reason these values do not exactly match is that 
other than the assumptions used for filling in missing data, the taps could be chosen from a fixed set of 
values, and their positions could not be set separately for each phase; however, the power factor values 
and tap positions are all realistic, and voltage drops are closer to the ones actually observed. 

 
Figure 18. Comparison of voltages using modified evolutionary algorithm for Feeder 1 
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Figure 19. Comparison of voltages using evolutionary algorithm for Feeder 2 

2.4.1.1.1.2 Secondary Customer Load Allocation Using the Optimal Lumped Loads 
The load allocation optimization algorithm described previously determined the optimal loading values at 
the secondary of the distribution transformers. These loads give the same voltage drops as given in the 
measurements and validate the accuracy of the network models to the distribution transformer 
secondaries; however, these optimal loads represent the sum total of all the loads present downstream of 
the distribution transformers. Because most EV integration will happen at the individual customer 
locations, it is essential to distribute these lumped loads on each phase of the distribution transformer 
secondaries to downstream customers.  

Figure 20 shows the feeder models with all the distribution transformers marked as red triangles. These 
models show that the secondaries represent a significant portion of the feeders; however, further 
validation of the secondary models was not possible because no information was available for the 
locations of the secondary customers or their voltage measurements. The only information available was 
the number of downstream customers for each distribution transformer and their respective monthly kWh 
values. These values were used to distribute the lumped optimal loads to downstream customers. The 
approach followed here ensured that the voltage drops and phase imbalances at the distribution 
transformer secondaries will remain similar to the ones observed from the measurements. This approach 
is shown in Figure 21.  
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Figure 20. Feeder models showing the primary and secondary networks separated by the 

distribution transformers (red triangles) 

 
Figure 21. Distribution transformer secondary optimal lumped load among downstream 

customers 

• Because no information was available about which phase the customer was connected to, it was 
assumed that the number of customers per phase were equal, and the total number of customers for 
each distribution transformer was divided equally in all the three phases. 

• The annual kWh values were then determined for each customer (kWhcust) by summing the monthly 
kWh values. This averaged any inconsistencies that might have existed in the monthly billing periods 
and the SCADA data used.  

• The lumped load was then distributed to each customer based on their kWh proportion. To implement 
this, the total annual kWh per phase of the distribution transformers (kWhphase) was determined by 
summing the annual kWh values of all customers on that phase. Then, for each customer, kWhcust was 
divided by kWhphase to get the customer’s kWh proportion. This proportion was then multiplied by 
optimal lumped load to get the customer’s peak kW value. This ensured that the total load per phase 
of the distribution transformer stayed exactly the same and the customer’s peak loading corresponded 
with its annual energy consumption.  
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• The power factor values for each secondary customer load were kept the same as their correponding 
lumped load’s power factor at tp. Finally, because no nodes existed in the GIS files to connect these 
secondary customers, addditional nodes needed to be created. These nodes were kept roughly 
equidistant, and the distance was based on the plot sizes observed in the Google Earth overlay. The 
newly created secondary nodes are shown in Figure 22.  

  
Figure 22. Feeder 1 GIS layout without secondary nodes (left) and its OpenDSS models with added 

secondary nodes (right) 
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3 Grid-Readiness 
Evaluation of grid performance is essential for determining the readiness of the grid to adopt emerging 
technologies. Grid-readiness metrics measure the impact from emerging technologies on the reliability of 
the network under changing conditions, which is critical when evaluating new investments, large shifts in 
demand patterns and composition, or untested technologies. As a best practice, the evaluation and 
development of these metrics relies on time-series data collected from multiyear simulations of feeder 
models with multiple control schemes. A suite of technical indices is helpful in characterizing and 
understanding network operations coupled with possible feeder upgrades under different use cases and 
scenarios. The subsequent sections describe the metrics that are used to evaluate the grid impacts for 
different use cases and EV integration scenarios.  

3.1 Technical Indices 
3.1.1 M1: System Average Voltage Magnitude Violation Index 
The system average voltage magnitude violation index (SAVMVI) provides a measure of the severity of 
nodal voltage violations on a bus. It gives an estimate of how far outside the nodal voltages are from their 
permissible bounds, as shown in Figure 23 (M1), which presents a hypothetical time series and 
corresponding violations. For this study, separate bounds were used for primary (high-voltage) and 
secondary (low-voltage) nodes based on the recommendations of the utility. First, all primary and 
secondary buses were identified. If buses are primary, the overvoltage threshold of Vu = 1.1 p.u. and an 
undervoltage threshold Vl=0.9 p.u. is used. Similarly, if the bus is secondary then the bounds are assumed 
to be within Vu = 1.06 p.u. and Vl = 0.94 p.u. A bus could have multiple nodes based on the number of 
phases, so average bus voltage is considered here: 
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where n is the number of buses in any node i. 

For each bus i at each time point t, the violation outside the limits are defined by: 
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The time-averaged violation for each bus is then determined by: 
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where T is the total number of simulated time points.  

SAVMVI for the feeder is obtained by dividing the sum of the time-averaged violations for all buses by 
the total number of buses in the feeder, 

𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆 =  
1
𝑁𝑁
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where N is the number of buses in the modeled network.  

For instance, if a feeder has 100 nodes and each node has an average voltage of 1.06 p.u. for all time 
points (for example, 17,520 time points in total—for 30-minute resolution data set during a year), and the 
voltage threshold is 1.05 p.u., then: 

𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆 =  (1.06−1.05)∗100∗17520
100∗17520

= 0.01 p.u. 

3.1.2 M2: System Average Voltage Fluctuation Index  
The system average voltage fluctuation index (SAVFI) provides a measure of the differences between 
average voltages at a current time point and the preceding one (i.e., voltage fluctuations), as shown in 
Figure 24 (M2). This gives the voltage deviation or fluctuation at all buses at each time point, which is 
then summed for all the buses across the feeder. The time average for each bus divided by the number of 
buses gives the SAVFI. 

𝑉𝑉𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑛𝑛
�𝑉𝑉𝑖𝑖𝑘𝑘 
𝑛𝑛

𝑘𝑘=0

 

where n is the number of buses in any node i. 

Voltage fluctuation for any bus i: 

𝑉𝑉𝑖𝑖
𝑓𝑓𝑣𝑣𝑢𝑢𝑓𝑓(𝑡𝑡) =  �𝑉𝑉𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)−  𝑉𝑉𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡 − 1)� 
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𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆 =  
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𝑁𝑁
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where T is the total number of simulated time points, and N is the number of buses in the modeled 
network. 

For example, if the feeder example mentioned in M1 has a constant voltage difference between the 
previous and current time points of 0.01 p.u., then:  

𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆 =  (0.01)∗100∗17520
100∗17520

= 0.01 p.u. 

3.1.3 M3: System Average Voltage Unbalance Index  
The system average voltage unbalance index (SAVUI) provides a measure of the voltage unbalance 
(maximum difference between a bus’s individual phase and average voltage, M3, as shown in Figure 25) 
among all nodes. Voltage unbalance is defined as: 

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑉𝑉𝑉𝑉𝑉𝑉𝑢𝑢𝑛𝑛𝑢𝑢𝑎𝑎𝑣𝑣𝑎𝑎𝑛𝑛𝑓𝑓𝑢𝑢 =  
𝑆𝑆𝑉𝑉𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑉𝑉𝑑𝑑𝑖𝑖𝑉𝑉𝑡𝑡𝑖𝑖𝑉𝑉𝑛𝑛 𝑖𝑖𝑓𝑓𝑉𝑉𝑀𝑀 𝑉𝑉𝑑𝑑𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉 𝑑𝑑𝑉𝑉𝑉𝑉𝑡𝑡𝑉𝑉𝑉𝑉𝑉𝑉

𝑆𝑆𝑑𝑑𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉 𝑑𝑑𝑉𝑉𝑉𝑉𝑡𝑡𝑉𝑉𝑉𝑉𝑉𝑉
∗ 100% 
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To evaluate the SAVUI for all buses, the maximum deviation of any phase voltage of the bus from the 
average bus voltage is evaluated at each time point to get the unbalance and is summed for all time points. 
SAVUI is obtained by dividing the sum of the time-averaged unbalance sums for all buses by the total 
number of buses: 

𝑉𝑉𝑖𝑖
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where n is the number of buses in any node i, T is the total number of simulated time points, and N is the 
number of buses in the modeled network. 

For instance, if a feeder has 100 nodes and each node has an unbalance of 0.01 p.u. for all time points 
(17,520, as previously explained), then: 

𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆 =  (0.01)∗100∗17520∗100
100∗17520

= 1%  
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Figure 23. Technical indices used to quantify grid-readiness for hypothetical voltage profiles 

3.1.4 M4: System Control Device Operation Index  
The system control device operation index (SCDOI) provides a measure of the average control device 
operations in a day, such as voltage regulators and capacitor banks. For the feeder use cases presented in 
this report, operations of capacitor banks were evaluated with this index (SCDOIcap). SCDOIcap is 
calculated by summing all capacitor bank operations (TOcap) throughout the simulation time frame and 
then dividing this net operation count by the number of days (Tday) and the number of capacitor banks 
(NC): 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑎𝑎𝑐𝑐 =  1
𝑁𝑁𝑁𝑁
∗ 1
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑

� 𝑇𝑇𝑆𝑆𝑓𝑓𝑎𝑎𝑐𝑐,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑖𝑖=1
  

 
For example, if a feeder has two capacitor banks and each capacitor bank operates 10 times in a day, then: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑎𝑎𝑐𝑐 =  
2 ∗ 10 ∗ 365

2 ∗ 365
= 10 

3.1.5 M5: System Reactive Power Demand Index 
The system reactive power demand index (SRPDI) provides a measure of the power factor at the 
substation and consequently the additional loading on the substation transformer because of reactive 
power demand/injections of the feeder. To calculate this metric, the absolute reactive power flow at the 
substation is summed at each time point and divided by the total number of time points simulated: 

𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆 =  
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𝑇𝑇
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where T is the total number of simulated time points. 

For example, if the absolute reactive power flowing through the substation is 100 kVar at all time points 
(17,520, as previously explained), then: 

𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆 =  100∗17520
17520

= 100 kVar 

3.1.6 M6: System Energy Loss Index  
The system energy loss index (SELI) gives a measure of the total energy loss in the feeder as a proportion 
of the total energy demand of the loads. For this metric, the total feeder loss (kW and kVar) and total load 
kW and kVar are stored at each time point. These are then summed and multiplied by a multiplier (mult) 
to get the total energy loss and total energy demand of all loads.  

𝑀𝑀𝑀𝑀𝑉𝑉𝑡𝑡 =  
∆𝑡𝑡
60

  

where ∆𝑡𝑡 is the simulation time step in minutes.  

Total energy loss equals:  
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where T is the total number of simulated time points. 

Total load energy demand equals:   
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where L is the number of loads in the feeder.  

This index is then defined as: 

𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆 =  
𝐸𝐸𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠
𝐸𝐸𝑣𝑣𝑣𝑣𝑎𝑎𝑙𝑙

 

For example, if a feeder has a constant real power loss of 50 kW at each time point, and the sum of loads 
is constant at 1 MW at each time point, then during a year or 17,520 time points (30-minutes resolution 
data set): 

𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆 =  (50)∗17520
1000∗17520

= 0.05 𝑉𝑉𝑓𝑓 5%  

3.2 Simulation Architecture 
Time-series simulations are conducted leveraging NREL’s high-performance computing (HPC) systems, 
which enable the analysis of a wide variety of scenarios and longer time horizons because of the ability to 
drastically reduce computational time.  
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Figure 24 shows the different scenarios of multiyear, quasi-static time-series simulations required to 
assess grid-readiness and test the efficacy of BESS to mitigate possible overloading conditions. All these 
scenarios require different time resolutions, control modes, varying EV penetration levels, or network 
upgrades. Considering all these requirements the simulation platform should have the following features: 

• Be scalable to allow for the addition of new control modes, feeder models, EV penetration levels, 
time resolution, and length of simulations. 

• Provide the end user with an easy to use interface. 

• Be able to start multiple simulations together leveraging all available computational resources and 
minimize the total simulation time. 

• Be able to store all the raw data and processed results and make it readily available in the future. 

The simulation platform characterized in Figure 25 makes use of open-source tools such as OpenDSS and 
OpenDSSDirect.py, which provides a Python-based library interface to OpenDSS. It leverages the HPC 
resources available at NREL and is capable of starting thousands of quasi-static time-series simulations 
together. To further increase resource utilization, another open-source Python package, Dask, was used to 
run many simulations in parallel on the different cores of the same node. All the results are saved in 
separate directories to avoid overlaps. The platform also includes a Linux-based command line interface 
that allows the user to start all the simulations for a feeder with a single command line. Owing to its 
modular nature, new feeders can be added simply, and new control modes can also be easily integrated 
and simulated using the existing command line interface. By leveraging these capabilities, simulation 
times can be reduced from weeks or even months to several hours. 
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Figure 24. Multiyear time-series simulation scenarios 

 
Figure 25. Simulation architecture leveraging NREL’s HPC system. Photos by NREL  
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4 Electric Vehicle Integration 
This chapter describes the development and implementation of EV integration scenarios within the 
simulation framework. Impacts of EV loads are evaluated on the same two feeders discussed in detail in 
Chapter 2. Modeling this framework is conducted by following an object-oriented approach, i.e., an 
individual EV, charging station, and single charger are treated as separate objects with corresponding 
static properties. Three key variables were identified to initialize the framework, as shown in Figure 26: 

• Number of EVs: This parameter determines how many EVs need to be modeled for the area. Based 
on levels of penetration, this number would vary. The fleet can have different EVs and e-rickshaws, 
which will have different charging behaviors/preferences, battery capacities, and driving ranges. 
Initial results presented in the subsequent sections assume a homogeneous fleet, i.e., the battery 
capacities are the same, but the preferences vary randomly within a predefined set. 

• Charging scenarios: Three dominant modes are studied in the framework: (1) residential dominant, 
(2) public station dominant, and (3) commercial/workplace dominant. These modes help the 
framework determine how many chargers are needed to charge the vehicle fleet at its entirety. For 
Case 1, the required number of chargers is almost equal to the number of total EVs, whereas for Case 
2 and Case 3, a smaller number of chargers can be considered because there is an underlying time-
sharing concept among the users. 

• Length of simulation: This refers to the time duration for which the scenario will be simulated. If the 
simulation spans a multiyear time frame, growth factors may be included in the base level of 
penetration.  

 
Figure 26. Key parameters of EV scenario simulation framework 

4.1 Charging Scenarios 
Charging scenarios are formulated based on the types of chargers as initially specified by BRPL (Figure 
27). Bharat AC chargers are assumed to be the most prevalent models because they provide the most 
inexpensive charging options. In a residential-dominant charging scenario, a single AC charger is 
assumed to fully charge a single vehicle overnight. These chargers will be used by consumers in public- 
or workplace-dominant modes mostly to top off because the charging rates are slow. Level 1 DC chargers 
are assumed to be available in public or workplace/commercial stations. 
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Figure 27. Bharat EV charger types and specifications 

These chargers are distributed according to three levels of penetration: 

• Low: residential, overnight charging, 3.3-kW chargers, new EV users added every year, double the 
vehicles in the 10th year from first year 

• Medium: residential + workplace, mostly overnight + afternoon peaks, 3.3-kW + 10-kW DC 
chargers, new EV users added every year, four times the vehicles in the 10th year from first 

• High: residential + workplace + public, overnight + afternoon peaks + intermittent topping up, 3.3-
kW + 10-kW DC + 50-kW CCS/Chademo chargers, new EV users added every year, eight times the 
vehicles in 10th year from first. 

4.2 Demand Profiles 
Demand profiles of EV chargers or charger clusters represent how much load an EV penetration scenario 
translates into for the grid. For residential charging: 

• Everyday charging takes place for each user with varying starting time and state-of-charge (SOC) 
levels 

• Individual 3.3-kW chargers—nonlinear relationship between SOC and consumption level 

• Overnight charging: starts anytime between 5 p.m. and 12 p.m. 

• Starting SOC is assumed to vary every day for a single user. 

In contrast to residential charging, a cluster of chargers or a charging station requires a detailed model of 
gas-station-like characteristics, where EV arrival/waiting can be modeled along with individual charging 
events. Figure 28 shows how the workflow is designed to calculate the net consumption of a charging 
station. 
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Figure 28. Workflow of a charging station model 

The following assumptions were considered while modeling the charging stations: 

• Chargers draw constant power when EVs are charging (independent of initial SOC). 

• Linear SOC build, e.g., if it takes an EV 5 hours to reach 100% of its battery capacity, in 1 hour the 
SOC will see a 20% increase from the starting point. 

• Time resolution: simulation time resolution can be more granular (for example, 5 minutes for the 
initial set of results), but new EV flock generation might take place in a longer time horizon (every 20 
minutes). 

• Number of chargers: fixed for a given type of station; the maximum waiting queue is equal to the 
number of chargers. 

• No maximum waiting time for individual EVs 

• Each EV can specify its charging preference: desired SOC or duration of charge event. 

Examples of how such a public charging station behaves throughout a day are shown in Figure 29. This 
station has 30 slow chargers with a possible net peak load of 99 kW. The dark blue trace shows how 
many EVs arrive at the station at different times (~250 in total; the numbers are high in the early morning 
and evening time frame, moderate around noon, and low at other times), and their initial SOCs are plotted 
by the red trace. Both variables are drawn from random distributions. Such distributions are created as a 
plug-and-play part of the larger model and are randomly created for each network simulation. The net 
consumption profile for this charging station is plotted with the light blue trace, showing constant high 
load in the evening and through the night. This refers to the fact that EVs require a longer time to charge 
in the evening because their initial SOCs are low, and consequently all the chargers in the station are 
occupied for this duration. The long EV queue at night is represented by the black trace at the bottom of 
Figure 29, which suggests that the queue keeps growing after 8 p.m. but tapers when midnight 
approaches.  

BRPL data (Figure 30) suggest that a commercial station where overnight parking and charging are 
prevalent will have a different demand profile than a publicly accessible one. These profiles represent 36 
days and measurements from a single meter. Examples of a few of these charging station placements are 
given in Figure 31 for Feeder 2. 
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Figure 29. Preliminary results from a sample public charging station model 
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Figure 30. Preliminary data from BRPL from a charging cluster during 36 days 

 
Figure 31. Sample locations of charging stations: secondary connected stations (left) and primary 

connected stations (right) 

4.3 Electric Vehicle Load Aggregates 
This section presents results from integrating the EV scenario generation framework with the feeder 
simulation platform. There are 300 chargers clustered among 10 charging stations (public + 
workplace/commercial, secondary connected). The number of chargers in a station could vary to reflect 
diversity in locations. In this scenario, approximately 2,000 EVs are considered that create discrete 
charging events within a single day. A hot summer day profile was selected for this initial simulation. 
Figure 32 through Figure 35 show typical net demand profiles for some charging stations that are 
generated for this scenario. Each station is broken into sets of DC (10-kW) and AC (3.3-kW) chargers and 
presented separately in these figures. 
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Figure 32. Net demand profile for a public charging station (35 AC chargers) 

 
Figure 33. Net demand profile for a public charging station (20 DC 10-kW chargers) 
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Figure 34. Net demand profile for a commercial charging station (10 DC 10-kW chargers) 

 
Figure 35. Net demand profile for a commercial charging station (25 AC chargers) 

Total EV loads for all these stations and baseloads for the given day are shown in Figure 36. As this 
figure suggests, for this scenario, the EV load adds more than 1 MW to the existing baseload of 1.5 MW. 
Voltage impacts are shown in Figure 37 and Figure 38, which plot minimum voltages (among all the 
nodes) for every 30 minutes. Figure 37 shows that there is a clear voltage drop in the evening because of 
the high EV load compared to the no EV scenario in Figure 38. Such a drop depends on the daily profile 
and variations in EV charging profiles. 
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Figure 36. Baseload and total load (after EV integration) profiles for a summer day 

 
Figure 37. Minimum voltage profile with EVs charging in charging stations 

 
Figure 38. Minimum voltage profile without any EV charging scenario 

On a system level, aggregated EV loads vary on temporal loading levels based on scenarios. For example, 
for the high EV scenario, the loads will get distributed when there are available stations (Figure 39), but 
they will increase in magnitude if those vehicles are charging mostly overnight for a residential-dominant 
scenario (Figure 40). 
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Figure 39. Ten-year aggregate EV demand (in kilowatts): fast-charging stations and distributed 

charging throughout a day 

 
Figure 40. Ten-year aggregate EV demand (in kilowatts): residential charging and mostly 

overnight events 
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5 Energy Storage Integration 
This chapter describes the method for sizing lithium-ion (Li-ion) batteries that would be deployed at each 
distribution transformer in Feeder 1 and Feeder 2. The chapter is broken into four sections. The first 
section describes how the batteries will be sized to mitigate distribution transformer overloading. The 
second section introduces a sizing chart that can be used to identify the battery size for any arbitrary 
distribution transformer loading profile. The third section discusses the impact of load growth. Finally, in 
the fourth section, the resulting battery sizes for Feeder 1 and Feeder 2 are tabulated and discussed.  

5.1 Battery Sizing Algorithm 
5.1.1 Distribution Transformer Overloading 
In this study, the Li-ion batteries are sized to mitigate overloading conditions defined by cases were the 
distribution transformer load is more than 70% of the rated capacity, as shown in Figure 41. 

 
Figure 41. Various overloading conditions observed for a distribution transformer rated at 990 

kVA. (The overloading threshold is 70% of the rated capacity.) 

An overloading instance covers a span of time defined from when the distribution transformer loading 
first crossed above the overloading threshold to when the loading again falls below the overloading 
threshold. During an overloading instance, the loading peaks at some point above the overloading 
threshold. This is the power associated with the overloading condition. The total energy associated with 
the overloading condition can also be measured (shown in the red highlighted areas in Figure 41). These 
two quantities, the power and energy, associated with the overloading condition can be coupled as a point 
pair, i.e., 𝑋𝑋𝑖𝑖=(𝑝𝑝𝑉𝑉𝑝𝑝𝑉𝑉𝑓𝑓𝑖𝑖, 𝑉𝑉𝑛𝑛𝑉𝑉𝑓𝑓𝑉𝑉𝑒𝑒𝑖𝑖).  

5.1.2 Battery Sizing Map 
This subsection describes the form of the battery sizing map that can be used to obtain the battery size 
appropriate for any distribution transformer subject to any loading profile. The complete battery sizing 
map for an example distribution transformer is illustrated in Figure 42. The blue dots in Figure 42 
correspond to every overloading instance observed during a year exceeding 70% of nominal rating, i.e. 
when the kVA loading of the distribution transformer surpasses a threshold defined as 70% of the rated 
capacity of that distribution transformer. The bivariate distribution of the overloading point pairs is 
superimposed over the scatterplot. It is assumed that commercially available batteries are generally 
available with a 4:1 ratio between energy and power—e.g., a 2-kW, 8-kWh battery could be readily 
procured, whereas a 2-kW, 20-kWh is not expected to be commercially available. Thus, all the battery 
sizes analyzed in this study will be on the 4:1 energy-to-power ratio line. Three points are of interest in 
the battery sizing map: (1) the peak power overloading instance point pair shown in red, (2) the projected 
peak power point pair to the 4:1 ratio line shown in purple (i.e. mapping at constant energy from the peak 
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power point to the 4:1 ratio line), and (3) the 70th percentile point pair. The 70th percentile point represents 
the point on the 4:1 ratio line that would decrease 70% of the overloading instances given a full SOC at 
the time of overloading.  

Each of the three sizing points of interest offer relative advantages and disadvantages. If a battery were to 
be sized to meet the most extreme overloading cases (point (1) or point (2)), then the battery would sit 
idle while charged to where a portion of the energy stored in the battery would be unused for all periods, 
except for during the most extreme case. Thus, the 70th percentile point pair (point (3)) allows for a 
battery to fully mitigate most overloading cases and a portion of the extreme overloading cases while 
avoiding the problem of unused idle stored energy. The 70th percentile point is selected precisely at a 
point on the 4:1 ratio line that enables the battery to fully mitigate all overloading instances during which 
loading on the distribution transformer is at or below the level of the overloading instance which is larger 
than 70% of all the observed overloading cases. This means that some overloading instances, particularly 
higher peak loading cases, will not be fully mitigated by a battery sized corresponding to the 70th 
percentile point pair. Still, even in these extreme cases, the battery will discharge to mitigate a significant 
portion of such an extreme overloading case but cannot fully mitigate the case. 

 
Figure 42. Battery sizing map for a distribution transformer 

5.1.3 Load Growth 
In this work, the batteries are sized to mitigate overloading conditions that are present after allowing for 
10 years of load growth, assuming a 2% compounding annual growth rate per BRPL’s expected load 
growth. Toward this end, the load profiles were scaled by a factor of 1.02 n, where n represents the 
number of years since 2018. Thus, n spans from [0,10]. The raw, uncleaned, distribution transformer 
loading profiles were used to scale the load, which is shown for distribution transformers of Feeder 1 and 
Feeder 2 in Figure 43 and Figure 44.  
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Figure 43. Distribution transformer load profiles with load growth at 2% during a 10-year horizon 

for Feeder 1 (without any data cleaning) 

 
Figure 44. Distribution transformer load profiles with load growth at 2% during a 10-year horizon 

for Feeder 2 (without any data cleaning) 

A battery sizing map can be produced for each distribution transformer for each year. An example is 
shown in Figure 45.  
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Figure 45. Sizing maps for each year for the same distribution transformer assuming a 2% 

compounding annual growth rate of the distribution transformer loading 

5.1.4 Sizing Results 
The battery sizes associated with the 70th percentile overload instance point pair are obtained using the 
method described for each distribution transformer in both Feeder 1 and Feeder 2 after allowing for 10 
years of load growth at 2%, as tabulated in Table 2 and Table 3.  

Table 2. Battery Sizes for Each Distribution Transformer in Feeder 1 

DT kW kWh 

29508683 0 0 

29510008 177 707 

29510532 49 198 

29511218 157 630 

29511236 139 558 

29601121 122 488 

29601126 0 0 
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Table 3. Battery Sizes for Each Distribution Transformer in Feeder 2 

DT kW kWh 

29504747 0 0 

29504790 104 415 

29504793 196 782 

29504798 890 3560 

29508749 0 0 

29511321 125 500 

29506095 235 939 

5.2 Battery Energy Storage System Control Algorithms 
There are different potential modes of operation for the grid-connected BESS, including peak-shaving, 
capacity-firming, and voltage support modes. This report focuses on the peak-shaving and base-loading 
BESS control applications to help alleviate the possible distribution transformer overloading condition 
with load growth and the rapid adoption of EVs in the modeled distribution feeders. 

5.2.1 Peak-Shaving Control Application  
Power system planning ensures that there is enough capacity to service peak-loading conditions to 
maintain grid reliability. The peak-shaving mode of BESS requires the service operator to provide trigger 
values for peak shaving and base loading. The BESS will discharge power into the grid if the total power 
demand at the measured point—in this case, the distribution transformer—is greater than the peak-
shaving upper reference limit, as shown in Figure 46. Conversely, the BESS will charge if the total power 
consumption at the measured point is less than the base-loading limit. It is important to ensure that the 
charging of the BESS occurs during the base-loading periods (i.e., the valleys) to avoid overloading the 
distribution transformers during peak periods. 

This BESS control application can be used to defer large investments required for system upgrades and to 
mitigate the use of peaking generators for “flattening” the load profile. This research will provide insight 
into the impact of such BESS applications on upgrade deferrals; line, distribution transformer, and 
system-wide losses; and other grid-readiness metrics, such as system energy loss index and other voltage 
indices. 



 

42 

 
Figure 46. Peak-shaving control configuration  

The BESS units were integrated based on industry standard and customized settings provided by BRPL. 
As shown in Figure 47, two thresholds for BESS charging and discharging have been chosen to 
investigate the sensitivity of the control algorithm to these set points. These thresholds can impact the 
BESS life because they determine the number charge and discharge operations.  

 
Figure 47. Peak-shaving principle. Adapted from (Karmiris, 2013)  

A load duration curve is used to determine the KVA trigger value set points for the distribution 
transformer. The load duration curve is developed by sorting the percentage loading on the distribution 
transformer in descending order. The plot of the load duration curve gives the duration, or how long, a 
distribution transformer is loaded at a particular loading level, for example, as shown in Figure 48a, for a 
typical time-series load. The corresponding load duration curve is created by sorting the load in 
descending order, as shown in Figure 48b. 
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Figure 48. Creation of the load duration curve 

Figure 49 shows representative distribution transformers with different load patterns characterizing 
residential and commercial load profiles. Also shown is the relative behavior of these distribution 
transformers with respect to the applied peak-shaving control thresholds. 

As shown in Figure 49, there are relatively more time points when the BESS discharges to shave the peak 
for both 70/65 and 70/50 discharge and charge thresholds for some transformers (e.g., DT 29504793). For 
example, DT 29504798 has the largest percentage loading, with a commercial profile peaking during the 
daytime, whereas the other distribution transformers follow a residential pattern. This distribution 
transformer consequently has the largest BESS unit installed to shave this consistent peaking condition. 
These BESS units were deployed at different distribution transformers to help prevent possible 
overloading conditions of these distribution transformers as the load grows coupled with EVs integration. 
Figure 49 also suggests that the efficacy of this peak-shaving algorithm as a function of the 
charging/discharging thresholds will depend on the load duration curve of the individual transformer, and 
these threshold values should be designed according to historical consumption patterns. 
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Figure 49. Load duration curves for each distribution transformer and set points for peak-shaving 

control 

5.3 Peak-Shaving Application  
This section presents simulation results for the peak-shaving algorithm implementation in 30-minute time 
step during a period of 10 years when two BESS deployment strategies were employed: (1) a staged 
deployment that only meets needs in the current year, and (2) one-time deployments of BESS units that 
would be big enough to cover overloading for the whole 10-year horizon. These two approaches are 
analyzed to measure the value of waiting for BESS cost-reduction projections, as documented in Cole 
2019. Further discussions on the economic viability of this approach are presented in Chapter 6. Also, two 
charge and discharge set points were used for the implementation of the peak-shaving algorithm to 
investigate the impact of varying control algorithms on system impact to value and other grid-readiness 
metrics. 

Figure 50 through Figure 53 show the impact of integrating BESS on the number of the 100% 
overloading instances for the considered distribution transformers. These figures also show the 
significance of peak-shaving control set points on the distribution transformer overloading time points. 
Figure 50 and Figure 51 show a significant difference between the two set points: 70/65 resulted in a 
significant reduction in the number of distribution transformer overloading instances for DT 29504793 
and 29506095 (with one-time standard BESS) compared to the 70/50 case. Figure 52 shows DT 
29504798 (with staged BESS), which has a commercial profile. As the load continues to increase on this 
distribution transformer, starting from the year 2024 through 2027, the 70/65 threshold results in a further 
reduction of the overloading instances than the 70/50 set points. In Figure 53, both set points produced the 
same result for DT 29511321. These analyses show that using the same set points for all distribution 
transformers might not be optimal and verifying the control algorithm through modeling could help 
improve performance. 
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Figure 50. Number of 100% loading instances per year for DT 29504793 

 
Figure 51. Number of 100% loading instances per year for DT 29506095 

 
Figure 52. Number of 100% loading instances per year for DT 29504798 

 
Figure 53. Number of 100% loading instances per year for DT 29511321 
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5.3.1 Impact on Losses 
Distribution transformers are generally designed to operate with maximum efficiency at or near average 
power; however, a transformer’s efficiency depends on its loading. Distribution transformers operating at 
rated capacity can have a unity loading coefficient (Yang, 2004). As shown in Figure 54, the deployment 
of BESS helps the distribution transformer operate at a higher efficiency than the baseline and upgrade 
scenarios.  

Although the BESS charges during the distribution transformer minimum loading period, this additional 
load helps improve the distribution transformer loading coefficient without exacerbating the distribution 
transformer loading. The 70/65 set points result in the distribution transformer operating at a higher 
efficiency for more periods in the 10-year study span than the 70/50 threshold. As a result of operating 
more frequently in the higher efficiency region, the deployment of BESS reduces the distribution 
transformer losses compared with the baseline values, as shown in Figure 55. At the distribution 
transformer level, both set points reduced losses compared to the baseline-thermal upgrade. Also, placing 
BESS near load centers has the potential to reduce distribution and transmission losses. 
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Figure 54. Percentage loading of DT 29504798 in different BESS control set points 

 
Figure 55. Impact of different deployment scenarios on distribution transformer losses 

Apart from losses at the distribution transformers, it important to capture the impact of BESS integration 
on line losses and overall system-wide losses. As shown in Figure 56, BESS integration resulted in 
insignificant losses for both 70/65 and 70/50 set points of the peak-shaving control application. 
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Figure 56. Impacts on distribution transformer and system-wide losses 

For both charge/discharge strategies, system losses are negligible—a 0.067% and 0.010% increase over 
the baseline—for the 70/65 and 70/50 thresholds, as shown in Figure 56. 

5.3.2 Battery Energy Storage System Transitions Between States 
Although BESS can be used to mitigate distribution transformer overloading conditions, it important to 
consider the effect of cycling on battery degradation. It is beyond the scope of this study to assess BESS 
degradation resulting from charge/discharge cycles, but we have implemented an algorithm to determine 
the number of transitions between charge/discharge states. This number does not indicate the number of 
charge/discharge cycles. 

As predicted from the load duration curves, BESS units installed with DT 29511321 and DT 29504798 
tend to have a similar pattern with respect to the charge and discharge thresholds. The set points 70/65 
have more BESS operations or change of states than 70/50; whereas for BESS units 29504793 and 
29506095, the number of change of states was more for the 70/50 than 70/65 thresholds, as shown in 
Figure 57. Again, this shows that using the same charging and discharging thresholds might not be 
optimal for all distribution transformers; however, a balance among system losses, distribution 
transformer loading, and battery cycling will be helpful to determine an optimal control algorithm for 
each deployment. 

% % 
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Figure 57. Number of BESS transitions of states for the considered distribution transformers 

5.4 Battery Energy Storage System and Electric Vehicle Integration 
This section considers a high EV penetration scenario with EV charging stations. In order to enable 
optimal operation of the system with the integration of EV and BESS, it is important to ensure proper 
coordination of both systems. Figure 58 and Figure 59 show the impact of BESS and EV charging on the 
distribution transformer load. Both figures show that the EVs and BESS charge (with the 70/65 threshold) 
during the distribution transformer loading valleys, and BESS operates to shave the peak. 
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Figure 58. Impact of EV charging on distribution transformer load 

 
Figure 59. Impact of BESS and EV charging on distribution transformer load 

As shown in Figure 60, because EVs and BESS charging occurs in the distribution transformer loading 
valleys, the distribution transformer operates for a longer duration in the higher efficiency region. This 
shows that with proper management and control design of these two technologies, the utility can 
maximize their benefits without comprising the reliability of their network. 
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Figure 60. Distribution transformer loading impacts of EV and BESS integration 

Figure 61 shows the impact of BESS and EV integration on the number of the 100% overloading 
instances for DT 29504798. The EVs alone increased the overloading instances by 35% more than 
baseline during the 10-year period. With the addition of a BESS, however, there is a significant reduction 
in the number of distribution transformer overloading instances. The BESS unit could mitigate 65% of the 
overloading instances, reducing even the baseline overloading instances and facilitating EV integration. 

 

 
Figure 61. Number of 100% loading instances per year for DT 29504798 with EV and BESS 

integration 

Figure 62 shows comparisons of different scenarios using the system energy loss index. Figure 62 shows 
that with EVs and BESS integration, the system losses increase insignificantly, by only 0.8%, compared 
with the baseline.  
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Figure 62. Evaluation of system energy loss index for various scenarios 

Another critical consideration in EV integration is the increase in line loading caused by EV charging, 
which is a key factor for utility system planners and operators. This is because line extensions or upgrades 
can be a challenging mitigation alternative for network upgrades in a place such as Delhi, where there are 
space constraints.  

In the baseline scenario with EV integration, 126 line segments experienced greater than 100% 
overloading, which can have a significant impact on line losses and voltage drop. Figure 63 shows the 
overloaded line segments in red for both the primary and secondary sides.  

 
Figure 63. Impacts of EV charging (high penetration) on line loading 

Traditional thermal upgrades of baseline violations could not mitigate EV thermal violations, but the 
BESS reduced line violations to only 19 line segments, as shown in Figure 64, which represents an 85% 
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reduction in violations. Thus, BESS units could be useful for network capacity relief as the grid continues 
to experience unprecedented load growth and for upgrade deferral for locations where scalability or 
feeder expansion is expensive and infeasible.  

 
Figure 64. Line loading relief as a result of BESS integration under the high EV penetration 

scenario 

5.5 Results: Grid-Readiness Metrics  
The simulation architecture described in Section 3.2 was used to simulate different use cases, such as the 
baseline, baseline with thermal upgrades, and different BESS peak-shaving control set points. This 
section provides results for these use cases and presents a quantitative comparison in terms of technical 
indices (as defined in Section 3.1). 

Figure 65 shows how the grid-readiness metrics can be used to assess the overall impact of these DERs 
on the grid, under different scenarios. Metrics M1–M3 (SAVMVI, SAVFI, SAVUI) assess voltage 
impacts from the DERs for different use cases. As shown in this figure, SAVMVI has a value of 
approximately 0.000028 which implies that the average violation outside permissible limits is in the order 
of 10-5 p.u. Similarly, a SAVFI value of approximately 0.0024 p.u. implies that the average voltage 
fluctuation is approximately 0.0024 p.u. Average voltage unbalance is also approximately 0.3%, as shown 
by the SAVUI metric, whereas 3% is usually acceptable.  

From the comparisons within the SAVMVI, SAVFI, SAVUI charts, however, it is evident that traditional 
thermal upgrades reduce voltage impacts by a small margin and that the BESS peak-shaving application 
does not significantly contribute to changing the voltage impacts (compared with the baseline).  

Capacitor operation count, as shown by SCDOIcap, is a bit too high and might not be realistic. These very 
high capacitor operations on a daily basis can be caused by the relatively larger time step of 30 minutes 
used for the 10-year simulations compared with the capacitor controller time delays (in the order of few 
minutes) and other controller settings such as ON and OFF set points; however, BESS do not increase 
average capacitor operations significantly over the baseline.  

M5, or SRPDI, shows that the average reactive power flow through the substation is approximately 765 
kVar, which increases marginally with thermal upgrades and reduces with BESS. A smaller substation 
kVar value indicates a better power factor and reduced loading of the network devices.  
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SELI, or M6, results imply that the network losses do not change by any significant order compared to the 
baseline for both the thermal upgrades and BESS peak-shaving application. 

 

 
Figure 65. Grid-readiness metrics for BESS (peak shaving), traditional upgrades, and baseline use 

cases 
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6 Economic Analysis of Network Upgrades 
Network upgrade decision points are determined based on technical analyses from the multiyear 
simulation performed on the OpenDSS model (Figure 66). Such analyses reveal when and where 
violations of a predefined suite of technical metrics occur. These technical metrics are used to localize 
where thermal violations, overloading, undervoltages, or overall power quality issues are observed on the 
time axis. Because power quality is an important consideration for power system operation, these metrics 
would represent the grid-readiness for the expected load/EV growth. To ensure reliable operation, this 
planning phase study considers traditional and advanced upgrade options. A traditional path would 
consider upgrading the network asset (line or transformer) so that the overall demand growth can be fed. 
An advanced upgrade option would do so with the integration of BESS that can also provide added 
benefits on top of mitigating the violations. This chapter looks at the economics of these network upgrade 
options with an emphasis on cost models evaluated for BESS deployments. 

 
Figure 66. Flowchart for network upgrade decision points 

6.1 Bottom-Up Cost Model 
Utility-scale BESS integration requires developing a cost model using a bottom-up approach for a 
realistic capital cost estimate. Total system upfront capital costs include hardware costs (i.e., battery cells, 
battery racking, storage container, and bidirectional battery inverter); electrical and structural balance-of-
system (BOS) costs; labor and equipment costs; engineering, procurement, and construction costs; and 
soft costs (i.e., fees, taxes, contingencies, and developer costs). BOS includes site preparation, mounting, 
wiring, containerization, and foundation. Among these components, the battery pack is usually the most 
expensive across different power/energy sizes. 

The energy storage market has grown in recent years in part because of improvements in Li-ion battery 
technologies. These improvements include cost reductions and performance achievements. The purpose 
of this portion of this study is to perform bottom-up modeling of a Li-ion BESS that is connected to the 
grid and to provide economic insight into the specific system components. 

The bottom-up cost model includes a mapping of all components that comprise a system (i.e., labor, 
material, processes, construction, and balance of system). The goal of this analysis is to find the key cost 
drivers of a system design. Figure 67 shows the bottom-up cost structure of utility-scale BESS 
installation. Total system upfront capital costs are broken into engineering, procurement, and construction 
costs and developer costs. Engineering, procurement, and construction nonhardware, or soft, costs are 
driven by labor rates and labor productivities.  
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Figure 67. Capital cost components to consider for a utility-scale BESS installation 

A typical BESS comprises battery racking, battery containers, power conversion systems, and step-up 
transformers. The bottom-up cost model is built on data collected from industry. A detailed bottom-up 
cost structure of our stand-alone storage model is shown in Figure 68 (Fu, 2018). 

 
Figure 68. Structure of the bottom-up cost model for stand-alone storage systems (Fu et al. 2018) 

We use the inputs from Figure 68 to calculate energy storage cost via the following equation: 
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𝑆𝑆𝑡𝑡𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑒𝑒𝐶𝐶𝑡𝑡𝑉𝑉𝑀𝑀 𝑆𝑆𝑖𝑖𝑆𝑆𝑉𝑉 (𝑘𝑘𝑘𝑘) × 𝑆𝑆𝑀𝑀𝑓𝑓𝑉𝑉𝑡𝑡𝑖𝑖𝑉𝑉𝑛𝑛 (ℎ𝑉𝑉𝑀𝑀𝑓𝑓𝐶𝐶)

 

Table 4 lists the cost model inputs and assumptions for a utility-scale BESS in the United States (Fu et al. 
2018). 

Table 4. Utility-Scale Lion Energy Storage System Model Inputs and assumptions in the 
U.S. 

Category Modeled Input Description 

Battery total size Up to 1.2-MW DC (4,800 kW) A baseline case to match the optimum load 

Battery size per 
container 5 MWh per 40-feet container To compute the number of containers 

Li-ion battery price $176/kWh 
Ex-factory gate (first-buyer) prices. We use an 
aggregated Li-ion battery price in the model, and 
cell types for different durations are not included. 

Duration 4 hours Duration determines energy (MWh) 

Battery central inverter 
price $0.06/W Ex-factory gate (first-buyer) prices 

Inverter size 2.5 MW per inverter Used to determine the number of battery 
inverters 

Transformer size 2.5 MW per step-up transformer Used to determine the number of transformers 

Foundation Up to 1,536 feet2 
Determined by the number of containers, 
inverters, transformers, and the spacing between 
containers 

Installation labor Nonunion at rates taken from 
statistics survey average by state 

Modeled labor rate assumes nonunion and union 
labor and depends on state. National benchmark 
uses weighted average of state rates. 

Sales tax 7.5% Model assumption. Determined by the sales tax 
in California 

Engineering, 
procurement, and 
construction overhead 

8.67% for equipment and material; 
23%–69% for labor costs; varies by 
system size, labor activity, and 
location  

Costs associated with engineering, procurement, 
and construction, SG&A, warehousing, shipping, 
and logistics 

Developer overhead  3% of total installation cost 

Includes overhead expenses, such as payroll, 
facilities, travel, legal fees, administrative, 
business development, finance, and other 
corporate functions 

 

Section 5.2.1. describes how the inputs from Fu et al. are improved to reflect the conditions in India. 
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6.2 Installed Capital Cost Projections 
There are several challenges to developing battery cost and performance projections based on publicly 
available data. The currency year (nominal value), duration, depth of discharge, lifetime, size of the 
battery systems, and operation and maintenance are not always defined in the same way, and sometimes 
they are not defined at all. We concentrated our projections on 4-hour Li-ion storage systems in this 
report. This section presents a total system overnight capital cost expressed in units of $/kWh. All values 
were converted to 2019$ using the consumer pricing index. (e.g., a $380/kWh, 4-hour battery would have 
a power capacity cost of $1,520/kW).  

The normalized cost trajectories with the low, mid, and high projections are shown in Figure 69 (Cole, 
2019). The high projection follows the highest cost trajectory through 2050 and has a constant slope from 
2020–2050. The mid and low projections have slope changes between each interval, with initial slopes 
being steeper than projections farther out, indicating that most publications see larger cost reductions in 
the near-term that then slow over time. By 2030, costs are reduced by 67%, 45%, and 11% in the low, 
mid, and high cases, respectively. By 2050, they are reduced by 80%, 59%, and 32%, respectively. 

 
Figure 69. Battery cost projections for 4-hour Li-ion systems, with values relative to 2018. The 
high, mid, and low-cost projections developed in Cole et al. 2019, are shown as the bold lines. 

To fully specify the cost and performance of a BESS, additional parameters besides the installed capital 
costs are needed, including fixed operation-and-maintenance costs. In recent studies, fixed operation-and-
maintenance costs vary between $6/kW-yr fixed operation-and-maintenance and a $40/kWh-yr. We 
selected fixed operation-and-maintenance cost as $15/kW-yr based on the California Independent System 
Operator (CAISO) average. Normalized cost reductions for the Li-ion battery and inverter, annual inflator 
(3%) for labor cost, and annual deflator (2%) for electrical and structural BOS is applied by varying the 
size of the battery systems. Figure 70 presents 10-year cost projections (2019–2028) for battery system 
size varying between 800 kWh and 4,800 kWh using these component values. 
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Figure 70. Battery cost projections with respect to system size between 2019 and 2028 

6.2.1 Methodology Adjustments for India 
6.2.1.1 Applications of Battery Energy Storage Systems 
BESS are primarily sized for peak-shaving and subsequent energy time-shifting applications in this study. 
However, a possible secondary application can be to provide reactive power support and phase balancing, 
which can be made possible by proper controls and programming. BESS system specifications are 
selected based on distribution transformer loading and consequent BESS sizing. Modeled system 
specifications for power, capacity, lifetime cycles, round-trip efficiency and degradation are listed below.: 

• Power range: 50 kW–1,200 kW  

• Capacity range: 200 kWh–4,800 kWh 

• Lifetime cycles: 6,000 (approximately 10 years) 

• Round-trip efficiency: 90% 

• Degradation: down to 80% of the original capacity over ten years. 

6.2.1.2 Capital Cost Adjustments 
• The labor rate is set as $2.45/hour as a fixed rate for all types of labor in India (CEMAC, 2018). 

• A 3.3% annual inflator is applied to the unit labor cost (BNEF, 2019). 

• Normalized cost reductions are applied to the Li-ion battery and inverter (NREL, 2019). 

• A 2% annual deflator is applied to electrical and structural BOS (Fu, 2018). 

• Some fees and costs have been excluded from the capital model for simplification. Excluded cost 
items are: 
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o Land acquisition 

o Permitting fee 

o Environmental cost  

o Interconnection fee 

o Transmission line  

o Contingency (3%) 

o Developer overhead  

o Engineering, procurement, and construction/developer net profit 

o Taxes (estimates for India). 

6.2.1.3 Financial Assumptions for Levelized Cost Calculations 
• Inflation: 3.3% 

• Real discount rate: 7% 

• Debt ratio: From 50%  

• Fixed operation-and-maintenance cost: 15 $/kWh-yr (low)  

• Electricity price: 7 cents/kWh (low) or 14 cents/kWh (high). 

Based on these assumptions, the bottom-up cost model outputs are depicted in Figure 71 in terms of the 
capital cost breakdown for a 1.2-MW (4.8-MWh) BESS deployment.  

 
Figure 71. Normalized capital cost breakdown for utility-scale battery system 

6.3 Cost Model Outcomes from Multiple Methodologies 
This section uses the bottom-up cost model defined in the previous sections to estimate the costs for 
building a BESS for DT 29504798. DT 29504798, which was identified in section 4.1.4 as needing 3560 
kWh of BESS capacity to defer the need for all traditional upgrades to the system. This represents the 
highest installed capacity on the two modeled feeders. Capital expenditure (Capex) and levelized cost of 
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energy (LCOE) are the two approaches that are used in the literature to define the feasibility of BESS 
projects. Both methods have strengths and weaknesses, which is why both methods are explored in this 
analysis. It is likely that as utilities become more familiar with how BESS fits into their systems new 
methods will be created or one will be favored over the other depending on the applications.  

Capex is the highest contributor to the battery cost. As the capex comes down, the affordability of the 
battery systems becomes more appealing. Analysis of capital expenditure calculation assumes 100% 
equity, without financing variables. This is a simplified calculation of most significant cost drivers in 
energy storage projects. 

LCOE is the total lifetime cost of an investment divided by the cumulated generated energy by this 
investment. The LCOE is the average internal price at which the energy is to be sold to achieve a zero net 
present value. To derive an LCOE model, the value of the electricity generation and the energy storage 
need to be defined explicitly. LCOE for storage systems is calculated in a similar manner as for electricity 
generation. The total cost of ownership of the battery system during the investment period is divided by 
the delivered energy. The simplified LCOE can then be calculated as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸 �
$

𝑘𝑘𝑘𝑘ℎ�
= �

𝑆𝑆𝑓𝑓𝑎𝑎𝑐𝑐 + 𝑆𝑆𝑆𝑆𝑆𝑆
(𝑆𝑆𝐸𝐸𝑅𝑅 × 𝑉𝑉𝑟𝑟) + 𝑉𝑉𝑆𝑆𝑆𝑆

(1 + 𝑓𝑓)𝑛𝑛
𝑛𝑛

1
 

where: 

• Project lifetime: years (n) 

• Capital cost: $ (Ccap) 

• Fixed annual operating cost: $ (FOC) 

• Variable operating cost: $/kWh (VOC) 

• Nominal discount rate: (r) 

• Annual electricity production, kWh (AEP). 

LCOE is used to model long-term costs of multi-hour BESS operation. Bloomberg New Energy Finance 
(BNEF) published its findings on LCOE for Li-ion batteries from public and proprietary data in the 2019 
New Energy Outlook (BNEF, 2019). BNEF’s global LCOE benchmark for battery storage sits at 
$187/MWh as of 2019 in the Delhi region. This is down by 35% relative to the beginning of 2018.  

On the other hand, LCOE is highly dependent on annual revenue coming from electricity generation. 
Batteries do not generate electricity to create revenue. They are used for energy arbitrage, to store energy 
and use it when needed or various other services. LCOE is also very sensitive to changes in financial 
parameters and debt structure. Also, it is more complicated when staged deployment becomes a strategy 
for the project. In our analysis, we used a 50% debt ratio, 10-year loan period, 10.3% loan rate, 3.3% 
inflation, 7% real discount rate, and 10.53% nominal discount rate for the LCOE calculations. 

We estimated the capital cost of a 3,600-kWh battery system (4 hour) as $336/kWh in 2019 and 
$213/kWh in 2030 (Figure 72). BNEF estimates that capital cost for a battery storage system is $338/kWh 
in 2019 and $168/kWh in 2030; however, the battery system size is not identified at BNEF’s report 
(BNEF 2019). 

The following sections show the outcomes of storage deployment on the Capex methods and the LCOE 
methods to help give a full picture when comparing BESS investments to other investments.  
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Figure 72. Capital cost estimated for 3,600-kWh battery using NREL battery cost model 

6.3.1 Battery Deployment Scenarios: Standard vs. Staged 
The staged deployment is designed for meeting the capacity requirements from the feeder 
line/transformer upgrades as time advances. We created three deployment scenarios: (1) standard 
deployment at the first year of the project (3,600 kWh), (2) staged deployment for meeting the battery 
requirements, and (3) staged deployment by adding 200 kWh every year (Table 5).  

Table 5. Standard and Staged Deployment Scenarios for 3,600-kWh Battery System 

Total Battery Capacity (kWh) 

Years 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 

Standard deployment 
(Scenario 1) 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600 

Staged deployment  
(Scenario 2) 2,000 2,400 2,400 3,000 3,000 3,000 3,600 3,600 3,600 3,600 

Staged deployment  
(Scenario 3) 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,600 3,600 

Battery capacity required 
(kWh) 1,474 1,760 2,055 2,329 2,556 2,840 3,054 3,287 3,560 3,560 
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Figure 73 represents the impact of standard and staged deployment scenarios to the battery capacity 
requirements. 

 
Figure 73. Standard and staged deployment scenarios for 3,600-kWh battery system with respect 

to battery capacity requirements between 2019 and 2018 

Maximum annual energy delivered by the standard deployment scenario is calculated by the installed 
battery capacity (3,600 kWh, 4 hour x 900 kWh), one cycle per day for the whole year (365 days) at its 
maximum capacity (1,314 MWh-yr) for the battery lifetime, with the effect of degradation down to 80% 
at the end of the battery lifetime (10 years). Similarly, for the staged deployment scenarios, maximum 
annual energy delivered is calculated by the installed battery capacity at that particular year with one 
cycle per day and the degradation of battery packages based on their installation years (Figure 74). 

 
Figure 74. Annual battery maximum capacity increase with the impact of battery degradation for 

standard and staged deployment scenarios 

The Capex method is a simple and effective way of showing the significant cost drivers in energy storage 
projects. The Capex results of staged deployment scenarios showed that capital costs can be 9.7% cheaper 
for Scenario 2 and 13% cheaper for Scenario 3 with respect to the standard deployment scenario (Figure 
75). 
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Figure 75. Capital cost savings for staged deployment scenarios 

Figure 76 shows BNEF’s estimates for battery storage LCOE and outputs of the System Advisor Model 
(SAM), developed by NREL. As shown, the first 3 years of forecast are very similar, but the SAM 
estimates increase more than the BNEF numbers ($225/MWh in 2019 and $163/MWh in 2028) in the 
later years. This likely results from greater detail that is allowed by using SAM, such as the battery size, 
electricity price, annual electricity generation/delivery, dispatch model, round-trip efficiencies, and annual 
fixed operation-and-maintenance costs. In our calculations, we modeled a 3,600-kWh battery system with 
standard deployment, 1,314 MWhr-yr generation/delivery with down to 80% degradation in 10 years, 7 
cents/kWh electricity price, and 15 $/kWh-yr fixed operation-and-maintenance cost. 
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Figure 76. Storage LCOE forecast comparison (BNEF vs. NREL SAM estimates) 

Figure 77 represents the sensitivity of LCOE to the electricity price. LCOE is calculated based on the 
generated electricity from the generator of a power plant. Because batteries do not generate electricity, we 
defined the buying and selling price of the electricity as the same (7 cents/kWh) and populated the 10-
year cash flow. As a sensitivity to power purchase agreement (PPA) prices, we created alternative 
scenarios by changing the difference of the buying and selling price in 1 cent/kWh increments up to 14 
cent/kWh. For example, the power purchase agreement difference (Δ PPA) of 7 cents/kWh stands for the 
buying price of 7 cents/kWh and selling price of 14 cents/kWh. The results showed that the additional 
revenue reduced the LCOE at a certain level for Δ PPAs ranging from 1 to 7 cents/kWh (Figure 77). The 
LCOE values are found to be as low as $126/MWH for Δ PPA of 7 cents/kWh in 2018. 
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Figure 77. Change in energy storage LCOE with respect to change in electricity buying and selling 

price difference 

Table 6 summarizes the present value of costs for BESS deployment scenarios and for the transformer 
upgrade scenario, all for the baseline load assumption. The present value of deployment scenarios is 
discounted to annual to the base year 2019 by applying the annual discount rate. The results show that the 
BESS scenarios are still more expensive than the traditional transformer upgrades, as shown for the 
selected Delhi feeders. One of the biggest benefits of BESS, however, is the possibility of providing 
additional performance criteria beyond traditional line/transformer upgrades alone. 

 

 

Table 6. Comparison of Present Value of the Cost for Different Deployment Scenarios  

 Present Value 
($U.S. 2019) 

Present Value  
(Indian Rupee 2019) 

Baseline (no upgrades are done) $0 ₹0 

Baseline + BESS Scenario 1: Standard Deployment $1,210,000 ₹86,428,571 

Scenario 2: Staged Deployment 
(Reaching Demand) 

$1,090,000 ₹77,857,143 

Scenario 3: Staged Deployment (Annual) $1,050,000 ₹75,000,000 

Baseline + Transformer Upgrade $285,000 ₹20,357,143 
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6.4 Key Takeaways from Cost Analysis 
Evaluating the cost-benefit of new technologies such as BESS is difficult because the full operational or 
capacity value of an asset is somewhat uncertain and likely to have either benefits or challenges that are 
not forecasted. In terms of benefit, one can imagine that a BESS placed on a feeder for DT loading 
control would, over time and experience of the operator, be utilized for other purposes such as helping to 
balance energy or be operated in a strategic way during emergencies. Therefore, the bottom-up cost 
model outlined in this section provides various methodologies for evaluating costs that may all be 
necessary comparing new investments in BESS, at least until investments in BESS is a more established 
practice by utilities. 

LCOE is limited in its ability to evaluate energy storage systems because batteries do not generate 
electricity. Rather, to compare the merits of different types and sizes of batteries, an alternate set of 
metrics are required that are normalized in some respect, such as the net present value of benefits minus 
costs, normalized to the storage capacity, or reported as a ratio of benefits to costs. As examined in this 
report, capital expenditure is a simplified calculation of significant cost drivers in energy storage projects 
and may provide necessary insights beyond LCOE for a deployment like the one outlined in this report. 
Installed battery costs are expected to reduce by 45% for the mid scenario cases in 2030 (Cole, 2019). 
This is also supporting the idea of postponing the capital expenditures to later years in staged deployment 
Capex models. It is very hard to reflect that scenario in an LCOE model due to high volatility in financial 
parameters. Key takeaways from the cost analysis include:  

• The staged deployment scenario results in additional cost savings because the price of batteries is 
expected to decrease over time, and delaying investment in capacity that is not needed has obvious 
benefits. While there could be challenges in other aspects of a staged deployment, the savings is 
substantial, with a 13.2% savings in the most optimal deployment strategy. 

• The results of the Capex model showed that, the unit cost for 3,600 kWh battery system can be as low 
as $338/kW for a standard deployment scenario. Similarly, unit Capex can be as low as $302/kW and 
$291/kW for staged deployment scenario case 1 and case 2 respectively. 

• BESS could provide additional performance criteria that additional transformer upgrades alone do 
not.  
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7 Conclusions 
This report presented a detailed framework for analyzing the impacts of emerging technologies, including 
EVs and BESS, on distribution feeders in India. The results obtained on models of two representative 
distribution feeders taken from BRPL’s territory in Delhi, India, were also presented. Novel distribution 
feeder modeling, data cleaning, and load allocation techniques were developed as a part of this effort. A 
suite of grid-readiness metrics was also integrated in the framework to help assess the impacts of 
emerging technologies on grid operation and voltage. These metrics provide a quantifiable way of 
comparing different DER scenarios. The developed distribution systems analysis platform can be easily 
scaled for testing the impacts of various types of DERs and DER use cases. 

As part of this effort, more than 500 hours of quasi-static time-series simulations were completed to 
analyze various DER scenarios using NREL’s supercomputing facilities. A 10-year time horizon was 
considered, starting from 2018 until 2027, to better assess requirements for network upgrades as EVs and 
load continue to increase on feeders. Traditional approaches of increasing asset capacities—either by 
adding new devices or by replacing existing, overloaded devices with higher rated devices—were 
compared against the scenario where an appropriately sized BESS was used to mitigate overloading 
conditions. An easy-to-use approach was developed that can suggest effective control points to be used 
for BESS by simply looking at the load duration curves of the distribution transformers. It was shown that 
choosing the correct control set points for BESS is essential because an incorrectly chosen set point might 
worsen the overloading instances.  

From these simulations, it was found that even a conservatively sized BESS designed to mitigate only the 
70th percentile of overloading instances was sufficient to defer network upgrades for several years into 
the future. A significant reduction in overloading instances was observed for that BESS, which followed a 
staged approach. In this approach, instead of adding a BESS sized for the 10th year in the first year, 
additional batteries were added each year based on the loading requirements. The impact of the BESS on 
feeder losses compared with the baseline and the traditional upgrades scenario was insignificant. This was 
because even though there was a marginal increase in net line losses, the distribution transformer losses 
reduced significantly as a result of their increased operation in their higher efficiency region. 

The baseline, traditional upgrades, and BESS scenarios were simulated along with EVs in the feeder. 
Load increase because of EVs was modeled by considering realistic driving patterns, charging behaviors 
and the rated capacity of different charger types to meet the expected SOC of EVs. The EVs charging at 
charging stations were charged during the valleys or low loading periods of their corresponding 
distribution transformers. This helped in increasing equipment utilization and efficiency. Such a charging 
approach can be implemented using novel rate structures that incentivize charging during off-peak 
periods. An important observation was that BESS could defer approximately 85% of expensive line 
upgrades required because of high EV penetration by mitigating overloading instances. Traditional 
upgrades based on baseline thermal violations could not defer these upgrades. It was also found that 
connecting EV charging stations to the primary or high-voltage lines of the feeder reduced undervoltage 
violations and secondary line upgrades compared with the secondary connected charging stations.  

Another major accomplishment of this effort was the development of a bottom-up cost model for BESS 
applicable for India. This model was used to determine the most cost-effective approach for installing 
BESS. Three scenarios were compared. In the first scenario, the BESS installed in the first year was sized 
to meet the expected requirements of the 10th year. A staged approach was followed in the second and 
third scenarios. In the second scenario, the BESS was sized to meet energy requirements of the first 
couple of years, and additional batteries were added after several years. In the third scenario, batteries 
were added each year to fulfill the energy requirements of the respective year. It was found that the 
present value of the BESS was 10% less in the second scenario than the first scenario, whereas it was 
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13% less in the third scenario than the first scenario. This showed that appropriate sizing, control, and a 
staged BESS deployment approach could provide significantly more technical and cost benefits. 

  



 

70 

8 Notable Outcomes of This Study 
This study led to numerous interesting findings. This chapter summarizes the modeling, simulations, and 
analyses to selected outcomes. Some findings are specific to the evaluation of BESS and EVs, whereas 
some outcomes are generic policy suggestions. The following sections summarize six outcomes. 
References to chapters and subsections are also included for more detail.  

8.1 Unmet and Unidentified Needs to Monetize Storage Services 
A BESS is an expensive asset, and every techno-economic analysis or cost-benefit analysis considers net 
present value and return on investment. The common understanding is that BESSs are not in a position 
provide a positive net present value. That aspect of a negative return on investment is a true and present 
challenge all over the world, despite the increase in BESS deployments. Although there is no one 
rationale for increasing BESS deployments globally, part of the cause is investors understand that not all 
the services a BESS can provide are monetizable. Figure 78 lists and categorizes all the services a typical 
BESS can provide; however, not all services can be converted to currency. With all future predictions 
pointing towards further reduction of BESS costs, it is certainly worth evaluating value from BESS prior 
to thermal upgrade proposal is put up before appropriate authorities. 

 
Figure 78. Technical value of BESS and categorization of nonmonetizable and monetizable 

services 

8.2 Scalability of reusable Framework for Distribution Utilities 
This effort developed a reusable framework for distribution utilities to assess the impact of emerging 
technologies (BESS, EV, and PV) on their power distribution grids. The framework contains three layers, 
as shown in Figure 79. The first and base layer is distribution feeder topology assessment. The second 
layer is for distributed generation, such as rooftop PV or any generation resources commonly referred to 
as a DER. The third layer is dedicated to BESS. The fourth layer is built to include EVs. Overall, all four 
layers interact and provide a comprehensive assessment of challenges and opportunities from emerging 
technologies. 
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Figure 79. Modular layers in our power distribution analyses framework 

Although this framework was simulated on NRELs HPC and simulation runs exceeded 500 hours, the 
computational requirements for using this framework are not beyond a typical server or modern laptop. It 
is expected that BRPL engineers could run distribution feeder operations scenarios without the need for 
upgrades of simplification of models. 

Analysis using this framework can be conducted outside of a supercomputing system, given that we 
would like many utilities and other interested users to do this analysis. The solution framework is built 
entirely based on open-source platforms and programming language. All the dependencies are open and 
accessible, keeping in mind other utilities or interested users.  

8.3 Impact of Battery Energy Storage System on Distribution System 
Losses Are Negligible 

The main case study performed in this effort is on helping distribution utilities understand the 
implications of deferring a distribution transformer upgrade by deploying a BESS in the neighborhood. 
Hence, the presiding question was understanding how a BESS affects system losses. Distribution 
transformers are generally designed to operate with maximum efficiency at or near 70% of rated power—
in other words, transformer efficiency depends on its loading. As shown in Figure 80, the deployment of 
BESS helps the distribution transformer to operate at a higher efficiency region than the baseline and 
upgrade scenarios.  

Although a BESS charges during the distribution transformer minimum loading period, this additional 
load helps to improve the distribution transformer loading coefficient without exacerbating the 
distribution transformer loading. As a result of operating more frequently in the higher efficiency region, 
the deployment of BESS reduces the distribution transformer losses compared with the baseline values, as 
shown in Figure 81. At the distribution transformer level, both set points reduced losses compared to the 
baseline-thermal upgrade. Also, placing a BESS near load centers has the potential to reduce distribution 
and transmission losses. 
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Figure 80. Percentage loading of DT 29504798 in different BESS control set points 

 
Figure 81. Impact of different deployment scenarios on distribution transformer losses 

8.4 Choice of Battery Energy Storage System Controls Decide the 
Value, Purpose, and Life of the Asset 

Power system planning operations ensure that there is enough capacity to service peak-loading conditions 
to maintain grid reliability. The peak-shaving mode of BESS requires the service operator to provide 
trigger values for peak shaving and base loading. The BESS will discharge power into the grid if the total 
power demand at the measured point—in this case, the distribution transformer—is greater than the peak-
shaving upper reference limit. Conversely, the BESS will charge if the total power consumption at the 
measured point is less than the base-loading limit. It is important to ensure that charging the BESS occurs 
during the baseload loading periods (i.e., the valleys) to avoid overloading the distribution transformer 
during peak periods. 

A load duration curve is used to determine the set points for the distribution transformer. Figure 82 shows 
the impact of peak-shaving thresholds on its effectiveness. This figure also shows the significance of 
peak-shaving control set points on the distribution transformer overloading time points. Figure 82 shows a 
significant difference between the two set points: 70/65 resulted in a significant reduction in the number 
of distribution transformer overloading instances for DT 29504793 and DT 29506095 (with one-time 
standard BESS) compared to the 70/50 case. Specifically, the 70/50 use case lead to an increase in 
overloading scenarios, perhaps negating the purpose of BESS deployment.  
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Figure 82. Number of 100% loading instances per year for DT 29504793 

Note: BESS 70 65 represents a control scheme where the battery operates to keep the loading of the DT between 
70% and 65%. Simillarly for BESS 70 50 keeping the DT between 70% and 50%. 

8.5 Staging Battery Deployments Can Be Cost-Effective 
We created three deployment scenarios: (1) standard deployment during the first year of the project 
(3,600 kWh), (2) staged deployment to meet the battery requirements, and (3) staged deployment by 
adding 200 kWh every year (Table 7).  

The results of the staged deployment scenarios showed that capital costs can be 9.7% less for Scenario 2 
and 13% less for Scenario 3 (Figure 83). Section 6.3.2 contains detailed descriptions on how we reached 
this result. 

Table 7. Standard and Staged Deployment Scenarios for 3,600-kWh Battery System 

Years 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 

Standard deployment  
(Scenario 1) 

3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600 

Staged deployment  
(Scenario 2) 

2,000 2,400 2,400 3,000 3,000 3,000 3,600 3,600 3,600 3,600 

Staged deployment  
(Scenario 3) 

1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,600 3,600 

Battery capacity required  
(kWh) 

1,474 1,760 2,055 2,329 2,556 2,840 3,054 3,287 3,560 3,560 
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Figure 83. Capital cost savings for staged deployment scenarios 

8.6 Coupling Battery Energy Storage System with Electric Vehicle 
Leads to More Benefits 

A critical consideration in EV integration is the increase in line loading caused by EV charging, which is 
a key factor for utility system planners and operators. This is because line extensions or upgrades can be a 
challenging mitigation alternative for network upgrades in a place such as Delhi where there are space 
constraints. As EV penetration increases loading of lines, transformers also increase. Not all distribution 
feeders can accommodate an increase in EV penetration at the same rate or to the same extent. Different 
distribution feeders have different limits due to ageing and other physical limitations. Chapter 3 in this 
report lists six grid-readiness metrics to assess the state and opportunities of distribution feeder. 

Additionally, a use case was assessed particularly to understand how a BESS can displace the need for 
grid upgrades with high EV penetration on selected distribution feeder. In the baseline scenario with EV 
integration, 126 line segments of the selected distribution feeder experienced greater than 100% 
overloading, which can have a significant impact on line losses and voltage drop. Figure 84 shows the 
overloaded line segments in red for both the primary and secondary sides.  
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Figure 84. Impacts of EV charging (high penetration) on line loading 

The traditional thermal upgrades of the baseline violations could not mitigate EV thermal violations, 
whereas deploying BESS reduced line violations to only 19 line segments, as shown in Figure 85, which 
represents an 85% reduction in violations. Thus, BESS units could be useful for network capacity relief as 
the grid continues to experience unprecedented load growth, and for upgrade deferral for locations where 
scalability or feeder expansion is expensive and infeasible.  

 
Figure 85. Line loading relief as a result of BESS integration under the high EV penetration 

scenario 
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