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Abstract

Over a billion people do not have electricity and many others have abysmal power supply.
Innovation has cut the price of solar photovoltaic panels to that point that off-grid solar
power can compete with traditional, grid electrification to light the homes of the rural
poor. We collected data over four years in Bihar, India, as the state underwent a transfor-
mation that raised electrification rates nearly 40 percentage points. We use a randomized
experiment to estimate a demand model wherein households choose between grid elec-
tricity, off-grid electricity sources and having no electricity at all. The model yields three
findings. First, demand for off-grid solar power is highly elastic, with an elasticity around
-3. Second, the value of off-grid solar is much greater when the grid is absent or if the grid
were priced at cost, in contrast to the highly subsidized rates in our setting. Third, though
at present power is only supplied part of the day, households do not value improvements
in supply enough to justify their cost. Our findings rationalize the government offering a
low price, low quality bundle of energy services to maximize access.

1 Introduction

The electricity landscape in the rural parts of developing countries is undergoing radical
changes. A billion people, mainly in South Asia and sub-Saharan Africa, do not have electric-
ity in their homes. Even in areas near or on the grid, many poor households are not connected,
and the supply of power is often abysmal (Lee et al., 2016; Burgess et al., 2019). This state
of energy access today may be due to the poor not valuing electricity, or, just as well, to their
governments failing to build the grid and supply power.

The transformation has two parts. First, many developing country governments are making

huge investments in the traditional mode of electrification, grid extension, and in subsidies for
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household grid connections (International Energy Agency, 2017). Second, rapid declines in the
cost of solar photovoltaic panels have opened a second, off-grid mode of electrification CITE
NEW FIGURE 1 HERE.! Solar panels can be used to supply on the grid, and, unlike other
sources of power, can also generate at the same efficiency set on the roof of a single, isolated
household. The ready nature and falling costs of solar technology have thus spurred hope
of a faster, greener path to universal electrification. Former UN Secretary General Ban Ki-
moon proclaimed “Developing countries can leapfrog conventional options in favor of cleaner
energy solutions, just as they leapfrogged land-line based phone technologies in favor of mobile
networks.”?

This paper studies the value of this wave of electrification for the poor, with an explicit
focus on how the poor trade-off electrification via different on- and off-grid sources. Lost in
many energy access goals is what kind of electricity the poor themselves want to buy. Solar
systems have improved rapidly, yet still leave households in electricity autarky, with higher
unit prices and lower loads than available on the grid. Our main contribution is to estimate
a demand system to measure household willingness-to-pay for different sources of electricity.
We collect a nearly four year panel of data on both the demand and supply sides of the retail
electricity market. We combine this data with a randomized-control trial that varies the price
and availability of solar microgrids, a new electricity source, and use the experimental variation
to estimate demand.

The setting for the study is rural Bihar, India. India, in the last ten years, has contributed
XX% of the total net gain in the world in the number of households electrified (International
Energy Agency, 2017). Bihar, a state of 104 million, exemplifies these gains: starting from
a low rate, we see gains in electrification of nearly 40 percentage points in our sample. In
2013, Bihar’s electrification rate was below that in sub-Saharan Africa (World Bank, 2017),
many villages in our sample had no electricity at all, and those households with power most
commonly bought it from local diesel generators (Figure 1, Panel A). Off-grid power existed

but held negligible market share. By 2017, many villages had near-universal electrification,

!Universal access to affordable, reliable and modern energy services by 2030 is UN Sustainable Development
Goal #7. Goal #7 also targets increasing the share of renewable energy in the global energy mix. Nearly all
large-scale aid programs in the power sector include significant on-grid and off-grid components. USAID, for
example, launched Power Africa in 2013 and DFID launched Energy Africa in 2015, both of which invest in
off-grid renewable electricity.

2Powering Sustainable Energy for All,” The New York Times, January 11th, 2012. See also “Africa Un-
plugged: Small-scale Solar Power is Surging Ahead”, The Economist, October 29th, 2016.



and solar power from household systems almost completely displaced diesel as the main source
of off-grid power (Figure 1, Panel C).

We study the transformation of Bihar’s electricity landscape in three steps. First, we
introduce a village-level experiment to estimate a demand curve for solar microgrids, apart
from any other sources of power. Second, we specify and estimate a demand model, us-
ing the experimental variation in price for microgrids as an instrument to recover household
willingness-to-pay for electricity. Third, we use the estimated demand over all sources of elec-
tricity to value Bihar’s electricity transformation and counterfactual changes in grid policy,
towards access, pricing and quality.

On the first part, the demand for solar microgrids in the experiment was highly elastic.
Demand is nearly zero at the prevailing price of INR 200, but leapt to 17% of households
paying for solar at a subsidized price of INR 100, before falling back again, over the course of
our experiment. Households in treatment villages were significantly more likely to own light
bulbs, use more electricity, purchase more mobile phones and spend less money charging them.
Yet, after experimental subsidies were removed, demand for microgrids collapsed.

The experimental estimates are internally valid but leave open why households gave up on
microgrids. In principle, it could be that households did not find electricity much better than
kerosene, or that microgrids were poorly maintained and so deteriorated over time. We argue,
using our exhaustive data on other sources, that the collapse in microgrid demand is instead
due to household substitution to their own solar systems and to the grid, which the government
was massively expanding at the time. With this substitution in mind, it is not possible, from
the experimental results alone, to infer microgrid demand in different circumstances, such as
if the grid did not arrive during our study, or to measure households’ value of electrification
from all sources put together.

In the second part, therefore, we specify and estimate a model of household demand over all
electricity sources. The model is a discrete choice demand system (McFadden, 1974; Lancaster,
1971). We allow the unobserved quality of all electricity sources to vary without restriction
across villages and time (Berry, 1994). In our setting, this feature is essential, since we expect
that source quality is changing over time, and it would be hard to observably capture how,
for example, the government’s greater efforts to hold camps and sign up new households for

infill grid connections translated into lower connection costs. We estimate the model in our



household-level panel data, allowing different households to have preferences over grid electric-
ity, common diesel generators, solar microgrids, their own solar systems and no electricity as
possible sources. As in the discrete choice literature (Berry, Levinsohn and Pakes, 1995, 2004),
we estimate the model using instrumental variables to account for the likely endogeneity of
price to quality. We use the experimental treatment assignments as instruments, and show that
this strategy is essential to recovering unbiased estimates of demand. Ordinary-least squares
estimates of the price elasticity of demand are negative but small and not significantly different
from zero, whereas our experimental IV estimates are greatly more negative, significant and
stable across specifications.

The demand estimates show substantial heterogeneity in household preferences over elec-
tricity sources. There are two main findings from the demand parameters themselves. First,
household demand for off-grid solar electricity is highly price sensitive, with an elasticity
around -3. Second, richer households, by any measure, prefer grid electricity. For example, a
representative poor household has a baseline 21 percent probability of choosing grid electricity.
If the household had a solid roof, but otherwise similar assets and income, the probability of
choosing grid electricity would increase by 11 percentage points. This greater preference for
the grid makes sense, since the grid can support higher load appliances like fans and televi-
sions that richer households demand. In the model, therefore, off-grid electricity is a stop-gap
technology, occupying the product space between no electricity and the grid.

The demand model allows us to measure the gains from electrification. We run counter-
factuals that vary the supply side of the rural electricity market on three different dimensions:
(i) technological innovations make solar systems cheaper, (ii) the reach and quality of grid
electricity is improved and (iii) the government changes grid pricing and quality from the low
price, partial supply status quo.

We find that the advent of off-grid solar power, from being out of the market to 2022
projected prices, increases the surplus of households by 1.5% of median household income.
Using the model, we study how the surplus from solar depends on the availability of the grid.
Solar power is roughly twice as valuable to poor households when the grid is absent. Solar
power off the grid also has an ancillary beneficiary: the government utility. The government
loses money on every rural customer it serves. Therefore, by inducing households to substitute

away from the grid, the advent of solar power reduces government losses on electricity supply



by nearly one-third.

Grid electricity contributes only slightly more to household surplus, for our study pop-
ulation, than does solar power. We find that grid electrification of all sample villages raises
household surplus by INR 1326 (USD 22) per household per year, or 1.8% of median household
income. The value of grid electrification depends critically on current grid prices being highly
subsidized. If the price of the grid were raised to cover cost, grid market share would plummet,
from 24% to 5%. The corresponding drop in household surplus is nearly as large as would
occur from removing the grid altogether—a grid priced at cost might as well not exist for this
population. Conversely, improvements in quality, such as by ensuring that the grid supplied
for all five peak hours every evening, would increase household values for the grid and draw
some more households (5 percentage points) to get connections.

Finally, we use the model to address why the government chooses to offer a particular low
price, low quality bundle of energy services. The grid supplies power for 11 hours a day, on
average, and only XX hours during the key evening peak. We consider a counterfactual, budget
neutral “grand bargain,” in which the government supplies power for all the peak evening hours
but raises prices about a quarter to cover the cost of the additional energy supplied. We find
that such a bargain would slightly lower total surplus and household surplus, and differentially
lower household surplus for consumers below the poverty line.

The results suggest that the government is facing a hard series of choices in electrification:
few poor households value grid electricity enough to pay for it if priced at cost, nor do they
value continuous supply enough to pay for an upgrade, relative to the patchy supply today.
To say tariffs should be reformed to improve grid quality is a facile recommendation, and not
supported by our results. Solar power, by providing a stop gap technology, makes achieving
high rates of electrification—defined as the use of electric light and mobile phone charging,
from any source—easier, and dulls some of these trade-offs, as households priced out of the
grid fall back to solar. Over time, since richer households prefer the grid to run higher load
appliances, we would expect households to transition to the grid rapidly as incomes rise.

Our paper contributes to the literatures on the effects of electrification and demand for
electricity connections. Much of the literature on rural electrification has focused on the

spread of grid electricity, and found that grid electrification has had large effects on labor



supply, productivity and welfare.®> There are also a handful of experiments on the demand for
electricity connections, including at least two experiments on demand for off-grid solar power.*
The impact analyses in these papers are broadly consistent with our finding that demand for
off-grid solar is highly price elastic.

Our paper takes several steps to unify the literature on electricity access for the poor.
First, we estimate how households value both grid and off-grid electricity together, in a single
demand system. Prior work considers each source in isolation, and so cannot study substitution
between sources, which is ubiquitous in places at the frontier of electrification today. Second,
we consider the effects of policy on the supply side towards access, pricing and quality. Our
results rationalize a seemingly dysfunctional rural electricity sector, by showing that increasing
price and quality as a bundle may be less preferred by the poor households that governments
are trying to serve. The present subsidies and low quality can be justified by a government
that values access for the rural poor above all.

Our study also contributes methodologically to the development literature by placing a
greater emphasis on the external validity of experimental results. Field experiments have
lately gotten longer to address the realism and durability of effects.” A growing body of
work uses experimental variation to help estimate structural models.® We run a medium-run
experiment that varied village-level prices over nearly four years and collect data on both
sides of the market. We use our experiment to estimate the price elasticity of demand for
electricity in a discrete choice demand model. The model estimates enable us to study policy

counterfactuals that are well beyond the boundaries of the experiment itself, though not so

3Dinkelman (2011) finds that electrification increases employment but may have lower female wages, per-
haps by substituting for women in household work. Rud (2012) shows that electrification leads to structural
transformation. Intermittent supply of electricity reduces manufacturing firm output (Allcott, Collard-Wexler
and O’Connell, 2016). Lipscomb, Mobarak and Barham (2013) find large effects of electrification on the UN
Human Development Index and average housing values. Barron and Torero (2017) find that household elec-
trification reduces indoor air pollution. Burlig and Preonas (2016) find small and statistically insignificant
effects of India’s flagship village-level electrification program on the employment and wealth of households in
marginally electrified villages.

1A recent experiment in Kenya finds that grid electrification is prohibitively costly for rural Kenyan house-
holds even at heavily subsidized prices (Lee, Miguel and Wolfram, 2016). Aklin et al. (2017) find that offering
off-grid solar power in Uttar Pradesh, India increased electrification rates by 7 pp but had no effect on socio-
economic outcomes like expenditures, business creation or time studying. Grimm et al. (2016) find that
household willingness to pay is high, relative to incomes, but that nearly no households are willing to pay
market prices.

"De Mel, McKenzie and Woodruff (2013) study firm formalization with a 31-month followup, Dupas and
Robinsona (2013) study household savings with a nearly 3-year follow-up. Bandiera et al. (2017) study a
7-year follow-up to an asset transfer program.

SProminent examples estimate models of education, labor supply and migration (Attanasio, Meghir and
Santiago, 2011; Duflo, Hanna and Ryan, 2012; Bryan, Chowdhury and Mobarak, 2014; Galiani, Murphy and
Pantano, 2015).



far beyond the boundaries of our data, during a period of transformative change.

The rest of the paper runs as follows: Section 2 describes our data and gives background
on electrification in Bihar. Section 3 introduces the solar microgrid experiment and presents
estimates of the demand for microgrids alone. Section 4 then lays out and estimates a demand
model over all electricity sources. Section 5 uses the demand model for counterfactual analysis.

Section 6 concludes.

2 Background and Data: The Electricity Landscape in Bihar

The study is set in Bihar, an Indian state of 104 million (Census of India, 2011), about the
population of Ethiopia or the Phillipines. Bihar is one of India’s poorest and least electrified
states. Table 1 juxtaposes the United States (column 1), India (2), sub-Saharan Africa (3)
and Bihar (4) on the dimensions of per-capita GDP, per-capita electricity consumption and
access to electricity circa YEAR. The electrification rate in Bihar at the beginning of our
study was only 25%, about one-third of the all-India rate of 79% and below the rate of 37%
in sub-Saharan Africa.

The average Bihari used just 122 kWh of electricity per year. The per capita electricity
consumption is less than one percent of the level in the United States (column 4, last row),
roughly in line with the disparity in nominal per capita income. At this low level of con-
sumption, which averages over many households with no electricity at all, an individual can
power two light bulbs totaling 60 watts for six hours per day year round. The low level of
average consumption is an equilibrium outcome. Demand for electricity is low because many
households are poor. Supply of electricity is limited, on both the extensive margin, since many
villages are not on the grid, and the intensive margin, since supply is rationed.

In response to persistently low rates of household electrification in states like Bihar, the
Government of India has lately funded two large campaigns for village-level grid extension and
household-level connections, respectively. In his 2015 independence day address, Indian Prime
Minister Narendra Modi launched a rural electrification program with an ambitious 1,000-day
deadline to electrify 18,452 census villages still without access, at an estimated cost of USD

11 billion.” The village-level goal was declared achieved ahead of schedule on April 28, 2018.

"The target is out of a total of almost 600,000 census villages in India. This program, the Deen Dayal
Upadhyaya Gram Jyoti Yojana (DDUGJY), is a continuation, under a new name, of the prior government’s



When the grid reaches a village poor households may not connect or take a long time to do
s0.® The federal government therefore started a complementary USD 2.5 billion program to
subsidize infill household connections in electrified villages.? Even with money, states have to
execute to provide connections, since nearly all grid electricity in India is supplied by state-run
utilities. Bihar has made electricity access a priority (Kumar, 2019). Nitish Kumar, Bihar’s
six-time Chief Minister, promised universal household electrification as part of his reelection
campaign (Business Today, 2017).

Our study was perfectly timed to capture the disruption that this big push for rural electri-
fication caused in Bihar’s electricity markets. Here we first introduce our data sources and then

use that data to describe the electricity market in Bihar and its remarkable transformation

during our study period.

a Data

We collect data from both the demand and supply sides of the market over a nearly four-year
period. There are four main sources of data. First, on the demand side, a three-wave household
panel survey on the sources and uses of electricity. Second, on the supply side, administrative
data on customer enrollment and payments from a provider of solar microgrids. Third, on
the supply side, survey data from the operators of common diesel generators, an important
off-grid source of electricity. Fourth, on the supply side, administrative data from the state
utility on customer billing and payments as well as electricity supply. We were running a
separate, contemporaneous project with the state utility that allowed us to gain access to this
data. The timing of collection for each source of data is illustrated in Appendix Figure Al.
The first and last survey waves are separated by nearly four years and the supply-side data is
also collected over several years.

Our study sample consists of 100 villages distributed across three districts in Bihar (Fig-
ure 1). The study villages were chosen to have low rates of electricity access, along three
criteria. First, they were not listed as electrified villages by the government, meaning that at

least one neighborhood of the village was not on the grid, and generally implying low rates

Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY), which had similar objectives but fell short of reaching
all villages (Government of India, 2015; Burlig and Preonas, 2016).

8A village is defined as electrified once public spaces, such as schools and health centres, have access to
electricity, along with a minimum of 10% of its households.

9The Pradhan Mantri Sahaj Bijli Har Ghar Yojana, known as Saubhagya, launched in September 2017.



of household grid electrification. Second, as we worked with a solar microgrid provider, Husk
Power Systems (HPS), to offer solar microgrids, villages must not yet have been offered HPS
microgrids. Third, to enable a possible expansion of microgrids, villages were chosen to be
reasonably close to existing HPS sites. The total population of households in all 100 villages
was 48,979. Within this sample, we collect data for all of the sources above either at the
village level (diesel and grid supply) or the household level (household survey, microgrid and
state utility payments). We now describe each of these data sources in greater depth.

Household panel survey. Our household panel survey sampled 30 households per village to
cover about three thousand households across the 100 sample villages. The sample was drawn
to represent those with an interest in a microgrid solar connection, but, because this screening
for interest was loose, in practice the sample is nearly representative of the population as a
whole.'? The survey has three rounds, two thick rounds, which we call baseline and endline,
and one thin round, which we call follow-up. The baseline survey took place in November and
December of 2013, the endline from May to July of 2016, and the follow-up in May 2017 (See
Appendix Figure Al).

The two thick rounds used nearly the same survey instrument and covered demographics,
the sources and uses of electricity and welfare outcomes likely to be influenced by electricity use.
There are three main kinds of variables. First, demographics and household characteristics,
such as household size and literacy, as well as various wealth proxies, such as income, size
and structure of house and ownership of agricultural land. We use these variables to predict
electricity demand. Second, variables on electrification status, sources of electricity, source
characteristics such as hours of supply, payments, and uses of electricity including a complete
appliance inventory. Third, variables on education and health. We gave children reading and
math tests and asked households about any respiratory problems.!!

The thin, follow-up survey round took place one year after endline. The purpose of this

round was to update household sources of electricity. This round therefore did not update

10We ran an initial customer identification survey in August 2013 across all sample villages, which elicited
household willingness to pay for a solar microgrid connection. A random sample of 30 households per village
was selected among those who expressed interest in paying for a solar connection at a monthly price of INR
100. This identification was barely restrictive in practice, because households were not required to put down a
deposit nor where they held to their initial statement of interest when the product was later offered. Over 90%
of households without electricity or with just diesel-based electricity said they would be interested in using
microgrids. The same was true for over 70% of households with a grid connection or home solar panels.

"Prior research suggests that substituting from kerosene to electricity reduces indoor air pollution (Barron
and Torero, 2017). It has been widely hypothesized that children may benefit from using electric light to study
CITE.

10



household characteristics or education and health outcomes.

Microgrid administrative data. The second source of data is an administrative dataset on
microgrid customers from HPS. We partnered with HPS to roll-out solar microgrids in the
sample villages experimentally (See Section ?7). The dataset includes enrollment, pricing and
customer payments from January 2014 to January 2016. This data was subsequently matched
with that collected in our household surveys in order to estimate demand for solar microgrids
during the time between our survey waves.

State utility administrative data. We use three datasets pertaining to grid electricity: (i) a
consumer database for all formal customers, (ii) a billing and collections dataset containing bills
and customer payments, and (iii) village-level hours of supply, recorded from administrative
log-books. The data sources (i) and (ii) are matched at the customer level to our survey
respondent households. Many households using the grid in the survey are not matched, as
there are high rates of informal connections, i.e. electricity theft, in Bihar. We define formal
connections as those where surveyed households provided valid customer IDs that we could
match to the administrative data, and call households informal if they could not provide an ID
(which is written on the electricity bill) or the ID did not match. We discuss the characteristics
of formal and informal households below, when describing the characteristics of grid electricity.

Survey of diesel generator operators. Our final source of data is a survey of diesel generator
operators. Entrepreneurs set-up diesel generators and wire customers within non-electrified
villages, providing electricity to fifty or more households at a time. We surveyed these operators
to collect data on operating costs, hours of operation, pricing and customers served from
January 2014 to 2016.

With these sources of data we see, on the demand side, a rich set of household charac-
teristics and the actual sources and uses of electricity, in terms of the energy services that
connections provide. On the supply side, we have data on all the competing sources in the
marketplace, either directly from administrative sources or indirectly from our household sur-

vey of electricity consumers.

b Sources of electricity

Electricity is a prototypical commodity but in Bihar electricity connections are differentiated

products. This section describes the characteristics of different electricity sources. Unless

11



otherwise specified, we describe source characteristics at the time of our baseline survey.

i Grid electricity

Table 2 reports the characteristics of electricity sources at baseline (Panel A), endline (Panel
B) and follow-up (Panel C). The main source of data is the household survey. Grid supply
hours are recorded from the administrative data.

Grid electricity, the traditional mode, has a desirable bundle of characteristics. The grid
price of INR 73, the mean monthly payment reported by grid-connected households, is roughly
tied for the lowest price of any electricity source (Panel A). Households on the grid have a
mean connected load of 322 watts, twice as large as any other source (Panel A).'2 This greater
load is due to ownership of more and larger appliances (Panel B). One-third of grid-connected
households own a fan and one-tenth a television, whereas the ownership of these appliances
for households using other electricity sources is much lower or negligible. By contrast, nearly
all surveyed households with any source of electricity plug-in mobile phones and light bulbs
(Panel B).

We take the grid “price” to be the self-reported monthly payment, averaged across formal
and informal customers, of INR 73 per month. Due to low rates of billing and collection, and
high rates of informality and theft, this de facto price is only 46% of the de jure price, which
we calculate, using the administrative tariff schedule and consumption data, to be INR 150
per month.'® The presence of informality acts as a large price cut for the grid. Of the 158
households using the grid at baseline, less than half answered yes to the question “Do you pay
electricity bills?” The full grid price of INR 150 per month would place it amongst the most
costly sources; at INR 73 per month it is one of the cheapest.

CC: I don’t understand the above. Many households are formal but do not pay their bills.
Therefore if half of households are not formal, and pay zero, and half of households are formal,

and pay generally less than 100%, the average of their payments should be less than 50%.

2Properly, connected load is not a characteristic of a source, but depends on household appliance purchases.
We describe connected load as if it were a source characteristic because the connected load for all sources but
the grid is effectively limited by the load a source can serve.

13Tariffs are determined for each household by their consumer category. Many households in the sample
qualified for the Kutir Jyoti program, a lifeline tariff for the poor. The KJ program has a flat rate monthly
tariff of INR 55-60 for unmetered households and a rate of INR XX for metered households. Households on
the regular domestic category are charged a flat rate of INR XX per kWh if unmetered or a rate of INR XX
per kWh if unmetered. Given the tariff composition of our sample and an estimated average consumption of
XX per month, we expect households’ bills would average INR 150 per month if they paid the full bill every
month.

12



Burgess et al. (2019) study the origin and consequences of below-cost pricing for electricity
in developing countries, and treat Bihar as an in-depth case study. We argue that the tolerance
for theft and low de facto prices should be viewed as a delibrate government policy to maximize
access, subject to technical and political constraints, and often at the expense of quality and
reliability. The government loses money on every customer served. Supplying power below
cost to increase access requires the government to ration electricity in order to limit their
financial losses. Appendix Figure CITE shows the distributions of hours of supply for the
grid, during the peak hours of five to ten in the evening and the off-peak hours. In the study
area mean hours of grid supply was 9.7 hours at baseline, higher than for any other source.
However, mean supply on peak—in the evening when households are at home and demand

power for lighting—was only XX hours per day, less than several alternatives.

ii Diesel

Diesel generators are too big for households on their own. Entrepreneurs buy generators and
wire villages to supply diesel power on fixed-price plans during the high-demand evening hours.
Table 2, Panel A shows that diesel generators have a mean price of INR 100 per month, which
is cheaper than the full price of the grid but a third more expensive than the effective grid price.
The modal diesel plan offered, by far, was a 100 watt connection (enforced by wiring a fuse
onto the service line) for INR 100 per month. The 100 watt load is sufficient for consumers to
power several light bulbs and charge mobile phones. Generators run on a predictable schedule

in the evening and early night-time for an average daily supply of 3.4 hours.

iii Own Solar

Households in all villages have the option of buying their own solar systems in private markets.
A system consists of a panel, a battery, and sometimes a socket or controller to plug in and
switch appliances. We refer to this source as “own solar” to distinguish it from solar microgrids
that serve several households together. Households pay for own solar systems up front and
would usually to travel to a larger market town to buy a system and bring it back to the
village. Any household could do so, so we assume own solar is available in all villages. The

characteristics of own solar make it a close substitute to diesel electricity. Own solar systems

13



have a similar price to diesel and power appliances of similar connected load.'* Solar systems
at baseline run 8 hours per day, longer than for diesel generators but somewhat less than the

grid.

iv  Microgrid Solar

A solar microgrid has the same basic components as an own solar system but a slightly larger
scale, serving six to nine households at a time. Households can therefore only connect if
they also have interested neighbors (as with a diesel generator, but much more locally). The
microgrids offered by HPS consist of a 240 watt panel and a separate, 3.2 volt rechargeable
battery and meter for each household. Households have a key pad to secure access to the
battery and must purchase codes on a monthly basis to keep using the system. Each household
on the microgrid gets 25 to 40 watts of power for 5 to 7 hours per day. This represents a small
quantity of power, but the system is bundled with two high-efficiency light bulbs and an
electrical outlet, typically used for mobile phone charging, and therefore provides very similar
energy services to diesel and own solar systems (Table 2, Panel B). Because of its low voltage,
the microgrid is unable to power small appliances such as fans, unlike diesel and some own
solar systems. The prevailing price of microgrids at the start of our study was INR 200, making
the microgrid the most expensive source of electricity, but this price came down to INR 160

and and was further cut as a part of our experiment (Section 77?).

¢ Bihar’s electricity transformation

Competition between the above electricity sources transformed the electricity landscape in
Bihar during our study. The electrification rate, from any source, increased 37 percentage
points, from 27% to 64%, in somewhat less than four years.!” Figure 2 maps this transfor-
mation with the market shares of different electricity sources village-by-village; Figure 3 gives
aggregate market shares by source and survey wave; Figure 4 breaks out these market shares
by household income.

Start with Figure 3. Bar heights are market shares. Each cluster of bars shows a source of

0Once purchased, own solar systems have no operating costs. To make the price comparable to other
sources, which are paid monthly, we amortize the capital costs of own solar using an assumed lifetime of seven
years and 20% interest rate.

15 A5 a point of comparison, the same increase for rural (farm) households in the United States took 9 years,
during and after World War II, from 1939 to 1948 (of the Census, 1975).
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electricity and the shadings of bars represent shares at different points in time (survey waves).
At the baseline survey, shown by the black bars, the largest source of electricity, with 17%
household market share, was diesel power. That share understates diesel’s appeal; because
diesel operators require a sufficient number of customers to support their fixed costs, diesel was
only available in 62% of villages at baseline (Table 2, Panel A). The grid, by its characteristics,
seems better than diesel, but was available in only 35% of villages (Table 2, Panel A) and held
just a 5% market share (Figure 3). Microgrid solar had not entered and own solar systems,
being relatively new, also had only a 5% share. Figure 2 shows the distribution of these market
shares across villages. Many villages are black or nearly all black, with a small amount of red,
for the grid, and a decent share of blue, for diesel.

From this base, there are two transformative changes in market shares, and one passing
change. The transformative changes are first, rapid leaps in grid market share from 5% to 25%
and then 43% and second, a delayed rise in own solar market shares from 5% at baseline to
15% at follow-up. The grid electrification rate doubled in the one year between our endline and
follow-up surveys. The red and yellow circles of Figure 2, Panel B show the growth in grid and
solar electricity, respectively, across a wide set of villages. These two changes, together, cut
the rate of households without any source of electricity sharply (Figure 3, right-hand cluster of
bars). They also crushed the share of diesel, from 17% to a paltry 3%. Diesel operators exited
many villages altogether (not reported ADD APPENDIX FIGURE). The passing change is
that solar microgrid share went from nothing, up to 9%, when subsidies were offered during
our experiment, and then fell back to 3% a year later. Thus microgrids gained market share
but were not mainly responsible for the transformation in electricity access in Bihar.

To a first approximation, these huge shifts in market shares should be thought of as shifts
out in supply and electricity access for both the grid and own solar. The government, under
the electrification programs described above, extended the grid from 35% to 76% of sample
villages, held camps to connect more households and heavily subsidized connections, including
complete subsidies for all households designated Below the Poverty Line (BPL). No villages
in our sample had grid take-up over 50% at baseline, but there were 44% did by the follow-up
survey.

A second disruption to rural electricity markets has been caused by global declines in the

cost of solar technologies. The US National Renewable Energy Laboratory projects a 55%
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reduction in the cost of solar photovoltaics and a 75% reduction in the cost of batteries from
XXXX to 2022 (Feldman, Margolis and Denholm, 2016). Our data reflects these trends. The
price of own solar systems fell 11%, from INR 74 at baseline to INR 66 at follow-up. An
important caveat is that this price is likely not for the same energy service, but a better
one. Solar vendors may have penetrated smaller towns closer to villages, effectively lowering
connection costs, and batteries may be more reliable. We return to discuss source quality with
the demand model estimates.

While large shifts in supply are needed to explain the rapid growth in electrification, there
is also significant heterogeneity in household demand, even within a village. Figure 4 plots
electrification rates in a stacked bar chart. Each colored bar segment refers to a different source
of electricity, or is black, for no electricity. The three clusters of bars correspond to our three
survey waves. Within each cluster, the bar on the left gives the market shares for households
in the poorest income quartile in our sample, and the bar on the right for households in the
richest income quartile. The richest quartile has twice the electrification rate as the poorest
quartile at baseline. The composition of sources, for the rich, is also tilted towards solar
systems, though diesel (blue segment) has the largest market share for both income quartiles.
By the endline survey (middle cluster), electrification rates increase about 10 percentage points
for both income quartiles, and there is a large compositional change, as the grid knocks out
diesel generators. Microgrids (green segment) also gain market share. By the follow-up survey
(rightmost cluster), the electrification rate for the poor, at 60%, exceeds the rate for the rich
from the prior survey wave. The relative gap in electrification rates is much smaller and the
composition of sources is similar for both quartiles; solar, in particular, is no longer a product
for the rich. While survey-measured household income is only one proxy for electricity demand,
these comparisons suggest that there is significant household-level heterogeneity in demand
for electricity sources.

The electricity upheaval in Bihar therefore had two main features. First, a broad surge in
access, driven by expansion of the grid and a fall in the cost of solar. Second, a huge compo-
sitional change, due both to government policy and technological innovation. We proceed to
estimate household demand for electricity sources in order to value how these changes in the

market have benefited households.
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3 Demand for Solar Microgrids

This section describes the design and results of the experiment we use to estimate the demand
for solar microgrids. The estimates of microgrid demand are important in their own right. Off-
grid solar technology has emerged as a widespread substitute for grid electricity in marginally
electrified areas, and estimating demand for this new good will allow us to value how much it
benefits the poor.

The microgrid demand estimates also serve an instrumental purpose. In the next section we
will estimate a demand model over all electricity sources. The key parameter in that demand
model is how sensitive households are to the price of a source. We use the microgrid experiment,
described here, as an instrument for electricity prices to estimate our demand model. Using
the experiment to vary price builds a transparent connection between the reduced-form and

structural estimates of demand.

a Experimental Design

We partnered with Husk Power Systems (HPS) to vary the availability and price of solar
microgrids in a randomized control trial. HPS was founded in 2007 to provide electricity in
rural areas using biomass gasifiers as generators to obtain power from agricultural waste, such
as rice husks (hence the name of the company). These biomass plants could only serve a village
if demand was sufficiently broad and were subject to fuel supply disruptions. HPS made a
strategic decision to add a solar microgrid product to its portfolio as a means of reaching a
wider set of customers.

The experimental design is a cluster-randomized control trial at the village-level. We
randomly assigned sample villages into one of three arms: a control arm (34 villages) in which
HPS did not offer microgrids, a normal price arm (33 villages) in which HPS offered microgrids
at the prevailing price of INR 200 per month and a subsidized price arm (33 villages) in which
HPS offered microgrids at the reduced price of INR 100 per month. While the prevailing
price at the start of the experiment was INR 200, HPS later cut this price, within only this
experimental arm, down to INR 160, due to a lack of demand at the higher price. The normal

price arm can be thought of as providing the service roughly at cost and the subsidized arm
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t.16 Within each treatment village, all households were offered the same

perhaps 40% below cos
HPS connection and pricing, regardless of whether they had previously expressed interest in
HPS’s product or participated in our baseline survey. Sales of solar microgrid connections
began in January 2014, right after the baseline survey.

Table 3 shows the balance of covariates in our baseline survey across treatment and control
arms for demographic variables (Panel A), wealth proxy variables (Panel B) and energy access
(Panel C). The first three columns show the mean values of each variable in the control,
normal price and subsidized price arms, with standard deviations in square brackets. The
next two columns show the differences between normal price and control arms and between
subsidized price and control arms, respectively, with standard errors in rounded brackets. The
final column shows the F'-statistic and p-value from a test of the null hypothesis that the
differences in means between normal price and control arms and between subsidized price and
control arms are jointly zero at baseline.

The joint test rejects the null of equality of treatment and control arms at the 10%-level
for three out of twelve variables at baseline. For example, households in subsidy villages are
more likely to have solid or pukka houses than control households and to have solid roofs.
The overall rate of electrification does not differ by experiment arms (an F-test for the joint
equality of “Any elec source (= 1)” across treatment arms has p-value 0.54), but households
in the subsidy treatment arm are more likely to have electricity from the grid and somewhat
less likely to have it from a diesel generator. We address this slight imbalance by including
household covariates as controls in both our reduced-form and structural estimates.

Because of the sample selection criteria, we are working with a population that is poorer
than the population of Bihar as a whole. Self-reported household incomes in the control group
at baseline averages INR 7,460 per month (USD PPP 2.6 per person per day), compared to
state per capita income of XXXX per month CITE. Two-thirds of households own agricultural
land and about a quarter have a pukka house, which is constructed of a solid material like

brick. The average household has 3.3 adults living in 2.4 rooms.

16\We estimate the capital and installation costs of a microgrid to be INR 105 per household per month
(Figure E2). This figure is net of capital subsidies provided by the government, which were on the order of
60% in 2014. The service of the system would include additional costs for billing, collection and maintenance.
It is therefore reasonable to estimate cost in the range of INR 160 to INR 200 per month, the range of prices
offered in our normal price arm.

18



b Results

The main energy services that microgrids provide are lighting and mobile phone charging;
households without electricity generally use kerosene for lighting and pay shopkeepers or
neighbors a piece rate to charge their phones. Appendix B shows that households in treatment
villages used more electricity, own light bulbs and mobile phones at higher rates and pay less
to charge their phones. Microgrids therefore provide the basic energy services they promise.

We use the experiment to estimate the demand for solar microgrid connections. In the
administrative data, we observe household decisions on whether to pay for their microgrid
each month. Households that did not pay would be disconnected, eventually, but from month
to month this risk was low.!” We use payments for the service at different time horizons as
the measure of quantity demanded.

Willingness-to-pay, that is, demand, is a summary measure of household surplus from
energy services. An objection that can be raised to using household demand as a summary
outcome is that there may be intra-household benefits to electricity access that are not captured
by demand. Leading candidates for such benefits include additional evening study time for
children or improved indoor air quality, from reduced use of kerosene Barron and Torero (2017).
We collected data on a range of social welfare measures, including children’s study time,
children’s test scores, and self-reported respiratory distress. While households in treatment
villages used more electricity, we do not see any statistically significant improvements on these
welfare measures.'® Appendix B describes this analysis. Given that we do not find any intra-
household benefits of microgrids, beyond the direct use of energy services, we proceed with
willingness-to-pay as our main outcome measure.

Figure 5 plots the share of households that chose to pay for microgrid electricity at different
prices and over different time intervals. Each line on the figure refers to payment at a different
horizon: at least once during the experiment, midway through during months 16-18, and at the
time of the endline survey at month 29. Three features of demand stand out. First, the demand
for microgrid electricity at the normal price prevailing before the experiment is practically zero:

only about 2% of households paid even a single month at this price. This feature means that

'"Husk Power Systems had an internal rule mandating that households who did not pay for three consecutive
months be disconnected, but this was sporadically enforced.

8The main caveat to this result is that, due to low take-up of microgrids in the higher price arms, we are
underpowered for test score outcomes and could not reject fairly large positive effects.

19



we effectively observe the choke price, the price beyond which no households buy microgrids.
Thus we do not have to extrapolate out of sample to calculate how much consumers may value
microgrids at higher prices. Second, demand is highly elastic, as evidenced by the fact that the
microgrid share increased to 17% at INR 100 per month, in the subsidized price arm. Recall
from the baseline data that INR 100 per month is by far the most common price charged by
diesel generators, so this price makes solar competitive with existing off-grid sources. The
price sensitivity we find for solar microgrids agrees with other work that finds demand is close
to zero when off-grid solar is priced at cost (Aklin et al., 2017; Grimm et al., 2016).

The third notable feature of demand is that it collapsed over the course of the experiment.
By the time of the endline survey, about two and a half years in, demand at the subsidized
price fell from 17% to 7% of households, and at the normal price from 7% to zero. This
collapse, in isolation, would be consistent with several explanations. Electricity might be an
experience good that households discovered was no better than kerosene. Microgrids may have
been poorly maintained, leading to growing disuse over time (As Hanna, Duflo and Greenstone
(2016) find for cookstoves). There may have been a temporary aggregate demand shock for
electricity during our study (Rosenzweig and Udry, 2019).

The descriptive evidence from Section 2, however, argues that these explanations are need-
lessly subtle: microgrids lost market share because the rapid expansions of own solar and the
grid ate their lunch. The main concern with the reduced-form estimate of experimental de-
mand, therefore, is that it is internally valid, but too narrow. Households may value electricity,
but not microgrids, if other substitutes are available. Moreover, as a matter of external valid-
ity, household demand for the microgrid product would have been different, perhaps drastically
so, if households faced a different choice set, for instance if the government had not made a
“big push” with the grid. The next section therefore introduces a model to jointly estimate

household demand for all sources of electricity.

4 Model of Demand for All Electricity Sources

We model consumer demand for electricity using a discrete choice demand model over elec-
tricity sources. We specify a nested logit model (McFadden, 1978, 1980; Goldberg, 1995).

Several aspects of our empirical setting allow for an especially rich specification of the
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model and credible estimation of its parameters. First, we have a household-level panel sur-
vey, and therefore allow demand to depend on both source and household characteristics.
Second, we allow the unobserved quality of all electricity sources to vary without restriction
across villages and time (Berry, 1994). In our setting, this feature is essential, since we expect
that source quality is changing, and it would be hard to observably capture how, for exam-
ple, the government’s greater efforts to hold camps and sign up new households for infill grid
connections translated into lower connection costs. Third, we observe one hundred separate
markets over time, and experimentally vary the price of one product, microgrids, across mar-
kets. The experiment allows us to estimate a key parameter in the model, the sensitivity of
households to monthly prices. To the best of our knowledge, this paper is the first to use an

experiment to estimate a discrete choice demand model.'”

a Specification

Utility for household ¢ in village v from electricity source j in survey wave t is is given by

Uijto = Ojto + 2575 + €ijt (1)

= Vijto + €ijt- (2)

The term Vjj4, is the strict utility of a choice for a household absent their idiosyncratic taste
shock €;;¢. The vector z;; contains observable household characteristics including the number
of adults, household income, whether the household owns agricultural land, the literacy of
the household head, the number of rooms in the house, and the solidity of the house and the
roof. These characteristics enter utility with a choice-specific coefficient y;, which captures
how household observables shift mean utility relative to the mean for that source, village and
survey wave. For example, as income increases, households may have a greater preference for
grid electricity vj—griq > 0, but an unchanged preference for diesel.

The term 04, represents the mean utility of an electricity source j in village v at survey

wave t and depends on observable source characteristics x4, and unobserved quality &;,

Sjto = T B + &jto- (3)

YKremer et al. (2011) is a close precedent that experimentally varies the quality of a good (a local water
source) and uses observable variation in walking distance to water sources as a proxy for price.
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The vector x4, of observable source characteristics includes price, hours of supply on-peak
(from five to ten pm), and hours of supply off-peak. Quality &, is the unobservable source-
specific utility in a given village and at a certain time. Quality may include both unobservable
physical characteristics, such as the load that can be served by a solar system, as well as
characteristics of the service, such as service interruptions or the cost of paying a bribe to get
a connection in the first place.

The nested logit model imposes that households’ idiosyncratic tastes for electricity sources

are distributed iid across households and survey waves with the joint distribution

F(eg, ... €igt) = exp [_ Z ( Z eeiit/(lﬂg)>1_0g].

g ISV

Each electricity source j belongs to a nest, indexed by g. The parameters o, measure the
similarity of sources within a nest; as o, approaches one, idiosyncratic variance in utilities
comes mostly from the nest level, not from distinctions between sources within a nest. Under
the restriction o4, = 0 there is no within-nest correlation and the model becomes a multinomial
logit model.

The choice probabilities in the model take a simple form. The inclusive value of nest g,

I‘/igtv = In Z eVijtv/(lf"'g)’
JE€Jy
gives the expected indirect utility when maximizing utility across sources in nest g (up to an

additive constant). The probability of ¢ choosing a source j in nest g; is then

Vit (1-04;)

JL7lgt(7g‘ I‘/ (170' )
e j E e Vigtv g

Pr(yit = jlzit) = (4)

Choice probabilities differ by household because they depend on household characteristics
zit via the Vjjs,. Market shares in the model are defined as the sum of household choice

probabilities across households in a village.

b Estimation

We estimate the model in two stages. The first, nonlinear stage estimates the parameters of

equation 1 via maximum likelihood. The second, linear stage estimation uses the Sjtv from the
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first stage as the dependent variable to estimate equation 3 using two-stage least squares. This
two-step procedure is common in the estimation of random coefficients logit models (Berry,
Levinsohn and Pakes, 1995, 2004). The key idea is to invert market shares to solve for mean
indirect utilities, allowing for linear IV estimates that are unbiased in the presence of the
endogeneity of price to quality (Berry, 1994).

Nonlinear estimation of the first stage. In the first stage, we use maximum likelihood to
estimate the parameters ¢, v and o using equation 4. Let y;;; indicate that household ¢ in

survey t chose product j. The log-likelihood of the sample is

N T
log L(v,0ly,2) = > > log Pr(yilzi; v, 0,8(7,0)). (5)
i=1 t=1

We write §(7y, o) to show that we concentrate the d parameters out of the log-likelihood (Berry,
Levinsohn and Pakes, 1995). For every candidate parameter vector (v, o) we solve for the ¢
that exactly fits the aggregate market shares.?’ This greatly reduces the dimensionality of the
non-linear search, as the ¢ vector has up to 1200 elements (= 4 sources x 100 villages x 3
surveys) if every source were available in every village.

Linear estimation of the second stage. We can now use equation 3 to recover the B pa-
rameters via a linear regression of the estimated gjtv on the observable characteristics of the
electricity source at the survey-by-village level, x4, Let {1, = Ejt + éjw be the sum of
a survey-wave average quality Ejt for each source and the deviation éjtv of the quality of a
source in a village from that average. Let TNormal and Tsupsidizea € Village-level treatment

dummies. We specify the estimating equations

5jtv = Z x;tvkﬁk + xjtv,pricegprice + Ejt + éjtv (6)
k#price
Tty price = N0+ ﬂlTNOTmall{Endline} + ﬂgTSubSidizedl{Endline} + Vjty- (7)

The main concern with estimation of equation (6) is that the error term j;, measures the

20We use a Laplace correction to adjust market shares if a source is available but not purchased by any
household in our survey sample. This correction is needed because the model will always predict a strictly
positive, though small, share for a given source, while exact zero shares are observed in finite samples. For a
sample of size n, this correction replaces observed market shares s; with §; = (ns; +1)/(n + J + 1), which
has the effect of giving small, positive shares to any source with a precise zero share, while slightly deflating
the shares of other sources. Since we observe availability on the supply side for the grid, microgrid and diesel,
separately from whether any household in our sample used a given source, we do not apply this correction if a
source was not available in a village. Instead, we remove that choice from the choice set for that village.
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unobserved quality of a source, inferred from market shares. If a source is very good in a par-
ticular village, for example a diesel operator allows higher loads, then the price of that source
may endogenously be set higher, implying E[gjwla:jtvk] # 0. We estimate (6) by two-stage
least squares, using source-by-wave fixed effects Ejt. The first stage (7) uses the experimental
treatment assignments, interacted with a dummy for the timing of the endline survey, when the
experiment was ongoing, as instrumental variables. The treatment is randomly assigned and
so unrelated to village-level source quality. We also know, from Section 3, that the experiment
did vary the price of microgrids and so will provide a first stage.

We are also concerned that the hours of supply on the grid may be endogenous to demand.
To account for that, in some specifications we also instrument the hours in a village (both
on- and off-peak) by a predicted supply using nearby villages. The logic of this leave-one-out
estimator is that supply in a given village may be affected by supply in those villages nearby,
for instance, due to common rationing rules if they are served by the same substation. This
type of supply-side instrument is common in discrete choice demand estimation (Nevo, 2000).
In our setting, a supply instrument based on nearby villages is sensible, because the structure
of the distribution grid does physically link the supply decisions within a region. The exclusion
restriction is that supply of electricity in nearby villages is not correlated to the determinants
of demand in a given village. An example where this restriction would be violated is if there
are common unobserved demand shocks across nearby villages, conditional on our rich set of
household observables. The detailed construction of the supply instrument is presented in
Appendix b.

The fitted residuals in the regression (6) estimate the unobserved component of mean
utility:

Ejto = éjt + fjtv = Ojtv — x;'t»uﬁ-

These estimates allow us to observe how the unobserved qualities of electricity sources vary
across sources, villages and time.

Counterfactual surplus. With the parameters of the demand model we can calculate house-
hold choices and surplus under counterfactuals that vary the availability and characteristics of

electricity sources. The aggregate market share of electricity source j is the average household-
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level choice probability for that source

1N Gt/ (1-5y)

Si=—o
it —— —
N i—1 eUgIVigt § kG:I e(lfgk)fvikt

where I/‘\/igt =In Z et t,7))/ (1=T0),
Jj€Jy
The expected household-level indirect utility from a choice set J is the log of the sum over

nests of a term dependent on nest inclusive value
E [mjax Uijto | j] =In Zg: e(1=F9)Vigt

We run counterfactuals by considering a restricted set of choices J’ or by using the esti-
mated coefficients to calculate new &,tj if the characteristics of sources changed. average The

willingness-to-pay for a scenario that alters the choice set is

N
— 1 ~ ~ ~
WTP = _N <E [mjax Uijtv ‘ J/:| —E [mjax Uijtv ‘ j:|) //Bprice'
i=1
Predicted market shares and the willingness-to-pay will be the main objects of interest in our

counterfactuals.

¢ Results

This section reports estimates of household demand for electricity sources. We then use these
estimates to run counterfactual simulations to value changes in the technology, availability,
and pricing of various sources of electricity.

The full demand model has 1033 parameters: 1000 technology-by-village-by-survey mean
indirect utility parameters backed out from the first-stage demand model, 29 parameters gov-
erning household heterogeneity, 3 parameters on the average effects of source characteristics
and a parameter governing correlation of the source-specific utility shocks. We therefore re-
port only select parameters to give a sense of how the model represents household electricity
choices. First, we describe the linear estimates of the average effects of source characteristics.
Second, we present estimates from the non-linear estimation of how household characteristics
affect their choices. Third, we present distributions of source quality to characterize quality
changes over time.

Mean effect of source characteristics. Table 4 reports estimates of the linear part of the
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demand model, obtained by regressing the mean household indirect utility, recovered from
the first stage, on source characteristics. Column 1 estimates the linear part of the model by
OLS and column 2 instruments for source price using the experimental variation in microgrid
prices. Column 3 instruments for price and also for hours of supply, using the imputed hours
of supply based on the supply to nearby villages.

The main finding from the linear part is that price has a large, negative effect on mean
household indirect utility (column 3). The estimated coefficient associated with a INR 100
price increase is -2.08 (standard error 0.74). To give a scale to this number, the average
probability of choosing the grid is 24%, and the model estimates imply that a INR 10 increase
in the grid price (17% of the mean price of INR 59) decreases grid market share by 2.9 pp (12%
of the average share). The elasticity of grid market share with respect to price is therefore
-0.71. We interpret this as a big change in price; INR 10 is enough money to buy two cups
of tea or three bananas, but raising the grid price by this amount in a month cuts market
share by a noticeable 2.9 pp. Below, e discuss further the elasticities implied by the model
estimates.

The experimental variation in subsidy level is critical to identifying the household price
response. In an analogous ordinary least squares specification, we find a small, negative and
insignificant effect of price on mean indirect utility (column 1). The difference between the
OLS and IV estimates of the price coefficient is consistent with either (a) endogeneity of price,
wherein higher prices are set in villages with higher-quality products, making the response to
price appear inelastic or (b) measurement error in prices, which would attenuate the estimated
price coefficient towards zero from below. The experimental instrument has a strong first stage
despite the fact that the price variation only applies to one electricity source (column 4). As
expected, being in the normal (unsubsidized) price group raises price, whereas being in the
subsidized price group lowers price.

Returning to Table 4, we also estimate the effect of hours of supply during the peak hours
of five to ten in the evening and during off-peak hours (all other hours) on mean utilities.
In the IV specification (column 2), we find a positive but statistically insignificant effect of
peak hours of supply and a smaller, negative coefficient for off-peak hours. The estimate of the
value of peak hours is not precise, but agrees with the idea that agricultural households mainly

value light in the evening hours. In the column 3 specification, we additionally instrument
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for hours of supply using imputed hours of supply based on supply to nearby villages. We
find that the coefficient on price is unchanged and the coefficient on peak hours is positive
but still statistically indifferent from zero. The point estimate is somewhat larger than the
estimate without instrumenting for hours, from column 2, but we can not reject that the value
of peak hours is the same in the two specifications. We proceed with the column 3 estimates,
instrumenting for both price and hours, as our main specification for counterfactuals, on the
grounds that supply may be rationed in part based on village latent demand, which argues for
the instrumental variables approach on a priori grounds. We report results from the column
2 specification as a robustness check (CITE APPENDIX TABLE).

Heterogeneity in demand across households. Table 6 shows the estimated effects of house-
hold characteristics on choice probabilities in the demand model. The choice probabilities
are derived from the estimated coefficients of the demand model, reported in Table 4. The
effects of household characteristics on choice probabilities are non-linear; we evaluate these
effects for a poor household, which we define as a household of two adults with a one-room
house, without a solid roof or walls, that does not own agricultural land. (The full profile of
a poor household’s characteristics is in Appendix Table D6.) The table shows how the house-
hold’s probability of choosing each electricity source (across columns) varies with a change in
characteristics, either from zero to one (for discrete variables) or of one standard deviation
(for continuous variables). Similar tables for median and rich households are presented in
Appendix Tables D7 and D8.

The main finding of the table is that richer households, by any measure, have stronger
preferences for grid electricity over all other sources. For example, our representative poor
household has a baseline 21 percent probability of choosing grid electricity. If the household
had a solid roof, the probability of choosing grid electricity would increase by 11 percentage
points (standard error 2.5 pp). Similarly, increases in the number of household adults, house-
hold income, land holdings, literacy, house quality or the number of household rooms all have
positive, economically meaningful and statistically significant effects on the household proba-
bility of choosing grid electricity, and all also reduce the probability a household chooses no
electricity (the outside option). Some household characteristics also increase household choice
probabilities for other inside goods; for example, households with higher incomes are more

likely to choose solar microgrids. The effects of household characteristics on demand for the
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other inside goods, however, are much less pronounced than on demand for the grid. Table
2 offers a natural interpretation of this finding: grid electricity offers higher load, and many
more households on the grid can run a fan or a television. Richer households want the energy
services these devices bring.

Unobserved source quality. The demand model allows flexibly for changes in ¢, the
unobserved mean utility of electricity across villages and time. We call this quality for short.
Figure 6 summarizes these source-specific qualities by plotting a histogram for each source:
each row is one source and each column is one survey wave. Within each source and wave, the
histogram shows the distribution of quality across villages.

The figure shows how the landscape of electrification in Bihar has shifted, with the grid
and own solar systems gaining market shares in a relatively short period of time, while other
technologies have stagnated. The distribution of diesel generator quality, for example, is
about the same in all three survey waves (though there is some truncation at the bottom, due
to exits). Our microgrid partner, HPS, did not offer its product in many villages at baseline
(which factored into our experimental design). Moreover, it did not change its product between
our endline and follow-up surveys, which is apparent in the figure, as the distribution of inferred
qualities is similar in the endline and follow-up (row 3, again, with some truncation below).
Contrast the stagnation of diesel and microgrids with own solar systems, which shifted up in
quality in each survey wave. These improvements could be due to improvements in technical
factors such as battery capacity and load, which we do not model directly, or to a broader
reach of marketing and distribution of these systems. Finally, we see large improvements
also in the quality of the grid, especially between the endline and follow-up survey waves.
These improvements show the results of a government drive to increase household connections,
which may have increased access and therefore the estimated quality of the grid. There is
a remarkable concordance between our prior understanding of changes in quality for each
technology in the market and the qualities inferred from the demand model (Figure 6).

Implied elasticities. Table b presents the estimated price-elasticities for each source implied
by our model.?! The demand for grid electricity is estimated to be less elastic, at -0.74, than
for the other sources of electricity. Own solar and microgrid solar electricity have own price

elasticities of -3.48 and -2.34, respectively. Some consumers are tethered to grid electricity and

21These are arc-elasticities calculated using a 10% price change for each respective source with respect to its
endline average price.

28



would absorb price increases. A possible explanation is that grid is the only source capable
of generating enough power to support large appliances like televisions and fans, which are
widely used by richer households.

The increases in electrification over the period of study were therefore due in part to solar
innovations and improvements in quality, in part to falling prices for solar systems and in part
to a rapid expansion in the availability and quality of grid electricity. We now use the model

to break down the contribution of these factors to household surplus.

d Modeling choices

Our model casts household electricity demand as a static differentiated choice problem. Here
we discuss several assumptions that this framework makes.

Static model. We use a static model instead of a dynamic model, where households hold
sources as assets, or condition future choices on past decisions. We took this route for two main
reasons. First, in our context, three of the four sources we study are paid on a monthly basis
(own solar being the exception), and so households do not have any asset value from holding
these sources. Second, empirically, it does not appear that households are tied to sources they
used in the past. We see total disadoption of diesel, and adoption and then disadoption of
microgrids, within our study and massive changes in shares from one year to the next. These
aggregate movements suggest that households do not behave like a connection to a source is a
sunk cost. Our model certainly does allow that there are unobserved adoption or connection
costs, via the quality terms.

Substitutes. The structure of our model assumes that sources are substitutes and that
households cannot choose bundles of sources. In some settings, for example in cities, house-
holds may have diesel generators or solar power to provide power during grid outages, making
the technologies complementary. We do not see much of this in our sample, perhaps because
households are too poor. At the time of our endline survey, which is used as a point of de-
parture for counterfactuals, only 1.3% held multiple sources (Appendix ADD TABLE ON
MULTIPLE SOURCES). For these few cases, we set a priority order where households are
assumed to have chosen the grid if the grid is a part of any bundle.

Nested logit. We use a nested logit model instead of a random coefficients (mixed) logit

model. There are three reasons for this choice. First, we have especially rich observable house-
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hold data that allow complex patterns of substitution without random coefficients. Mixed logit
models are essential to admit richer patterns of substitution when working with aggregate data
and large numbers of product choices (for example, observing one car market with hundreds
of models). Using micro-level moments in mixed logit models can help identify model param-
eters and, with a rich model specification, may be necessary for reliable identification (Berry,
Levinsohn and Pakes, 2004). In our setting, we have household-level panel data with unusu-
ally rich observable household characteristics, which we show have large effects on demand,
and a small number of product choices. Therefore, the aggregate patterns of substitution in
the model will not be tied to simple patterns like the independence of irrelevant alternatives,
even within nests, because individual households make their own decisions. Second, we find
that introducing a small amount of unobservable correlation in tastes, via the nested logit
assumption, has negligible effects on the estimates, which suggests a low value, in our data, to
specifying a model with random coefficients on additional characteristics.?? Third, the nested

logit model can be estimated efficiently by maximum likelihood, without simulation.??

5 The Value of Electrification

The transformation of Bihar’s electricity landscape happened on several dimensions at once.
The demand model we have estimated now allows us to break down the household surplus
from the different changes that Bihar went through, and from counterfactual policy changes
that may be expected to increase access or surplus for the poor.

We specify counterfactual scenarios to address three broad questions. First, how much have
households benefited from innovation in off-grid solar? Second, what has been the value of
government investments to expand grid access? Third, how would further changes in electricity
policy—towards access, theft, pricing and quality—benefit the poor?

The third question is acutely policy relevant, because the status quo electricity policy in

Bihar, as in many other developing economies, is somewhat of a puzzle (Burgess et al., 2019).

22 Appendix Table D9 shows that the coefficients on observable characteristics and the fit of the model barely
change at all when varying the nesting structure, or using a multinomial logit model with no nests at all.
Nested logit is a simple case of a mixed logit model where the random coefficients are on group-specific dummy
variables (Berry, 1994; Cardell, 1997). The fact that this marginal enrichment of the error structure has no
effect on our results suggests a low value to allowing random coefficients on other characteristics.

23In principle, one could also estimate a mixed logit model using simulated maximum likelihood, but this
approach may be severely biased by simulation error and so is not used in practice (Berry, Levinsohn and
Pakes, 2004).
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Governments invest large amounts of capital to extend the grid to rural areas but then offer
abysmal quality service, rationing the poor customers they sought to reach. Pricing power
below cost, and tolerating theft mean the government loses money on electricity supply, and
does not have an incentive to improve quality. Our model allows us to study how changes in
grid policy would affect household surplus in equilibrium, given the choices that households

would make in response to new policies.

a Innovation in solar power

The first set of counterfactuals consider the value of innovation in solar power. The demand
model estimates showed that household solar demand is highly elastic. Here we quantify what
that elasticity means for households benefits from solar power.

To give a sense of the patterns of substitution between electricity sources, over a range of
prices, Figure 7 shows how the market shares of all sources respond to changes in the price
of solar. The characteristics and availability of sources are held constant at endline survey
levels. The price of solar microgrids, on the horizontal axis, ranges from INR 70 per month, up
through the range of our experimental treatments, to a choke-price of INR 300 per month. In
the construction of this figure, we vary own solar prices proportionally with microgrid prices,
since these sources have similar cost structures. The vertical axis shows market shares for each
source technology as solar prices vary.

There are two main results from the figure. First, echoing the elastic reduced-form demand
curve for microgrids, we see that microgrid demand is only a few percentage points at INR 200,
and that the sum of microgrid and own solar demand together is only a few percentage points
by INR 300. Off-grid solar power was not economically viable for this population, therefore,
until our study period. Second, as prices rise, households substitute from solar power to grid
electricity (blue dashed line), but mostly to no electricity at all (yellow solid line). At higher
prices of solar, above INR 200, most households who have grid electricity in their village, and
could switch, have switched to the grid, so the grid market share is flat above this level. As
the solar price rises further households switch to the outside option of no electricity. Solar
serves as a technological stop-gap between the grid and kerosene.

We can use the demand system to recover the value of solar innovation for the poor. We

consider the introduction of off-grid solar systems from nothing, essentially the status quo

31



circa 2013, to projected levels of cost in 2022, which are about one third below the subsidized
price in our experiment (Feldman, Margolis and Denholm, 2016; Howell et al., 2016).?* From
Figure 7, we can see that bringing the price down from the choke price to the projected levels,
where the lines stop at the left side, cuts the share of households with no source of electricity
(i.e., increase electrification rates, from any source) by about 35 percentage points.

Figure 8, panel 8A presents the results on surplus due to solar innovation. Each panel of
Figure 8 shows a related set of counterfactual scenarios. Within each panel, a cluster of three
bars represents outcomes in that scenario: two bars giving the market shares of grid (blue) and
solar (own solar and microgrid together, green), measured against the left axis, and one bar
giving the total household surplus from electricity sources for that scenario (black), against
the right axis. The left cluster in Figure 8 panel 8A, for example, shows that the value of
the status quo choice set at the time of our endline survey was about USD 32 per household
per year. Unless otherwise noted, in counterfactual scenarios, we hold the characteristics of
households and the availability and characteristics sources at endline survey (2016) levels.

Solar has considerable value to poor households. If solar were removed altogether (panel
8A, middle cluster of bars), household surplus from electrification would fall about 40%, from
USD 32 to USD 20 per year, though about 5% of the households displaced from solar would
connect to the grid. Conversely, if solar prices fall to projected 2022 levels (right cluster),
household surplus from solar would rise to USD 38 per household per annum. Solar systems
therefore increase household surplus from electricity connections by 90% (= 100 x (38 —
20)/20). The average monthly income in our sample is INR 7576 and the median is INR 6000.
Therefore the value of solar power is 1.5% of median household income (= 100 x USD 18/(12 x
INR 6000/60) at INR60 = USD 1). As a point of comparison, we estimate sample households
spend XX% of median household income on all sources of energy.

CC: ARE WE USING INR 60 = USD 1 THROUGHOUT?

CC: CALCULATE TOTAL ENERGY SPEND INCLUDING COOKING AND LIGHT-
ING. IMPUTE COSTS FOR COOKING FUEL USING FUEL GATHERING TIME

2 For solar PV, we assume a 55% reduction in cost (Feldman, Margolis and Denholm, 2016). For batteries,
we assume a 75% reduction in cost, in accord with the US Department of Energy’s 2022 goal (Howell et al.,
2016). Since panel and batteries only make up a part of the system, these changes imply a reduction in total
upfront cost of 34%, to USD 1.12, or 33% cheaper than our subsidy treatment (See Appendix Figure E2 for a
breakdown of costs). We apply the same proportional reduction in cost to own solar, assuming that the 55%
capital component of total upfront cost observed for microgrid applies to own solar as well. This is conservative
because the HPS product involves monthly recharge costs that do not apply to the own solar product, so the
cost of own solar, being made up mostly of capital, may in fact fall more than we forecast.
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Had the grid been absent, the value of solar would have been higher still. If solar cost falls
to 2022 levels, but the grid had not connected to our sample villages (panel 8A, right cluster
of bars), then solar market share would have risen to XX%. Surplus falls from the removal of
the grid, to USD XX per year, but falls less than it would have if solar had not been present
to pick up the slack (Figure 8, panel 8A, second cluster of bars). The value of solar is XX%
higher if the grid is absent. The importance of grid-solar substitution may explain why solar
take-up and solar businesses appear to be thriving in sub-Saharan Africa, where the grid is
much sparser than in India.

There is another, ancillary beneficiary from off-grid solar: the government. Table 7 presents
counterfactual results on market shares, household surplus and producer surplus. Each row is
a counterfactual scenario. The columns describe: market shares for each source of electricity
(columns 1 to 5); mean consumer surplus for households below the poverty line (6), above the
poverty line (7) and all consumers (8); producer surplus (9) and total surplus (10).25 In our
sample 76% of consumers are BPL. BPL consumers are modestly but significantly poorer on
all the household characteristics that enter the demand model (Appendix Table C5). Since
the model allows for heterogeneity in demand by household characteristics, surplus for BPL
and APL consumers may differ, although we do not condition demand directly on BPL status.

Producer surplus is the absolute surplus we estimate for the grid only. It captures profits
or losses that accrue to the state from supplying grid electricity and is typically negative,
due to high rates of theft and non-payment. Producer surplus for the grid can be taken as
capturing producer surplus from the whole market, if we assume that the other sources are
competitively supplied; this is probably accurate for own solar but not for diesel (which, in
any case, has a small share at endline). All surplus measures are in units of per household per
year.

Table 7, Panel A shows that the model, by design, fits endline market shares exactly,
which is by design since the source-by-village-by-wave mean utilities come from matching
model-implied shares to empirical shares. In the data, 57% of households have no electricity
access. The grid is the most popular source of electricity, with a 24% share, but the two types
of solar are not far behind, with a combined 17% share. Consumers have a mean surplus

of INR 1939 (column 8, USD 32) per year and the state distribution company a surplus of

ZBelow Poverty Line (BPL) is the official classification of poverty in India and entitles households to in-kind
food rations. BPL status is determined by DESCRIPTION OF HOW BPL IS JUDGED IN BIHAR.
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negative INR 497 (column 9, USD 8).

Now we return to the result on how the government benefits from off-grid solar. In the
status quo at endline, producer surplus is INR -497 per household per year. Panel B presents
the various counterfactuals on solar power. If solar power disappeared, producer surplus would
fall to INR -612; if solar power fell in cost, it would rise to INR -441. Thus the advent of
solar power from nothing to 2022 levels, which soaks up loss-making consumers totaling 8
percentage points of the population from the grid, reduces the government’s losses by 28%
(=100 x (612 — 441)/612).

We need to stick with one currency or the other. Charts are in USD and tables in INR.

My vote would be stay with INR and give references to USD.

b Improving grid access

Our experiment is based in a setting where the grid is deficient: it is offered only in some
villages and even conditional on availability, the average supply is merely 11 hours per day.
The effects of solar on electrification rates would likely have been different if the grid was
everywhere (which would give households better substitutes) or if the grid was non-existent,
as is the case in some parts of India and much of rural sub-Saharan Africa.

We predict demand under these scenarios by removing grid electricity from the choice set
or by extending it to all villages. The counterfactual results are presented in Table 7, Panel
C and shown graphically in Figure 8B. Improvements to the availability and quality of the
grid would increase electrification, with an effect similar in size to that of further innovation
in off-grid solar. By the time of our endline survey, the grid had reached 57% of sample
villages. If the grid were to be removed from all villages, the share of households without
electricity from any source would rise from 57% to 63%, and household consumer surplus from
all sources would fall by 43% (Figure 8B, Panel B, third cluster of bars; see also Table 7, Panel
C, row 2). If the grid were to be extended to all villages, it would increase electrification by
13 pp and household surplus from all electricity sources by 26%, relative to the status quo,
or 120%, relative to no grid anywhere (the rightmost cluster of bars in Figure 8B, Panel B;
Table 7, Panel C, row 3). Even after this grid extension, we estimate that 44% of households
would remain without any source of electricity. The finding of low rates of household level

electrification even after universal village level electrification shows why progress on connecting
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rural households in poor countries has been slow.

One reason that grid adoption may be low is that quality is poor. We simulate improve-
ments in grid supply that increase the duration of power available by two hours per day (up
to five hours, the number of peak hours per day, if a two hour increase would exceed five
peak hours in total). This allows us to compare the intensive and extensive margin of policy
changes. If the grid were to offer two more hours of power during the peak period, we would see
5 pp more households on the grid (Table 7, Panel C, row 4). CHECK WHY MORE HOUSE-
HOLDS WITH SOLAR IN THIS SCENARIO: DOES NOT MAKE SENSE UNLESS SOME-
THING ELSE IS CHANGING IN THE COUNTERFACTUAL-SOLAR MARKET SHARES
SHOULD COME DOWN. The poor quality of the power grid therefore has a meaningful effect
on whether households get an electricity connection, but even full supply on peak hours would

leave roughly half of households choosing not to purchase any source of electricity.

c Rationalizing grid policy

Electricity in Bihar is heavily subsidized and the state tolerates a high level of theft, which fur-
ther lowers effective prices. Here we use our demand model to understand why the government
chooses this particular low price, low quality bundle of grid energy services.

First consider pricing. Low rates of payment, in our model, are measured by a low price
for grid electricity (See Section 2 b). We counterfactually raise the price of grid electricity
from INR 73 per month to INR 140, which we calculate would be sufficient to cover the
variable costs of supply. Raising the price of the grid to cover the variable cost of supply
would devastate grid market share (Figure 8B, Panel C, middle cluster of bars): the number
of households on-grid in this scenario falls from 24% to 5%. The price increase cuts household
surplus from electricity from INR 1939 (USD 32, leftmost cluster of bars) to INR 1299 (USD
21), which is 80% of the drop that would occur from removing the grid altogether. That is,
a grid priced at cost might as well not exist for this population. This large swing in market
share may seem extreme, but is consistent with our experimental estimates, in particular the
high price-sensitivity for solar around the price (INR 100 per month) of competing options like
diesel power (Figure 5). The total solar market share doubles, to about 30 percentage points,
as grid leavers adopt off-grid solar. The government does much better: producer surplus rises

from INR -497 to -52, nearly break-even. WHY NOT ZERO IF PRICED AT COST?
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A less drastic reform would try to move from the present low price, low quality bundle to
a higher price, higher quality bundle, to compensate households for their additional payments
with better energy services. Many policy observers recommend reforms of this kind CITE
FROM WB, IMF OR OTHER PARTY. We use the model to consider a budget neutral “grand
bargain” the government increases supply during peak hours and pays for that increase by
raising prices. We calculate that a price increase to INR 90 per month would be sufficient to
pay for the increase in supply. Figure 8B, Panel C shows the result in the bars at right, with
further detail in Table 7, Panel D.

The grand bargain scenario yields slightly lower total surplus than the status quo (INR
1363 down from INR 1442, Table 7, Panel D, second row). The decline is greater for households
below the poverty line (column 6, INR 100 per household) than above (column 7, INR 16),
despite that APL consumers get higher surplus from electricity overall. The share of households
with no electricity falls slightly, as some households are attracted to the greater peak supply
on the grid (column 5), even as the increase in price pushes other households off the grid
towards solar (column 3 and 4). The interpretation that the grand bargain roughly breaks even
depends on the model specification we use to a greater extent than do the other counterfactual
findings.?® Yet, in no specification do we find that the government can offer a bundle of

electricity services that clearly dominates the status quo.

6 Conclusion

NICK DID NOT EDIT

Electricity markets in the poorest parts of the world are undergoing radical changes. On
the one hand, darkness is still a pervasive problem — roughly a billion households, mainly in
South Asia and Africa, remain without any access to electricity. On the other hand, consumers
enjoy a growing number of choices on where they can source electricity from — technological
innovations are making off-grid solar a viable alternative to the grid and governments are

prioritizing extending the grid to poorer, rural areas. The main contribution of this paper is

26WWe estimate the value of price to consumers using our experiment, but do not have as strong an instrument
for hours of supply. Because our estimate of the value of peak supply is imprecise, the conclusion depends
on the exact specification of the demand system. For example, if we were to instrument for price but not for
hours, in the second, linear stage of the demand model, then the grand bargain would decrease total surplus,
due to lower household valuation in that specification. Hence, the finding that the grand bargain breaks even
in surplus terms is perhaps slightly optimistic.
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to create a demand system founded upon experimental variation in solar prices that allows us
to assess household willingness-to-pay for different sources of electricity. Through our demand
model, we can assess how households of different types value different sources of electricity,
which in turn allows us to investigate whether the darkness problem in the rural areas of
developing countries reflects a failure in expanding access to electricity or an unwillingness by
poor, rural households to pay for electricity relative to other consumption goods.

Access to electricity from the grid is taken for granted in developed countries but vast
swathes of communities in the developing world either lack access to it altogether, or receive
rationed, intermittent supply. In rural Bihar, one of the poorest parts of the world, our
data collection efforts reveal that this scarcity of formal grid has engendered a rich, dynamic
parallel market for alternative sources of electricity. Our surveys, conducted in 100 villages
in India’s poorest state, uncover innovations in off-grid solar technologies and government-led
grid expansions which imply that households face a growing choice set on where to source
electricity from. Where there is sufficient demand, markets for diesel generators have also
popped up. Still others choose to buy their own solar panels but at a substantial cost. New
technologies such as microgrid solar have also been introduced to this competitive market. Our
study was well timed to capture this period of dramatic change in the electricity market. This
region had epitomised the problem of darkness enveloping the developing world — at baseline,
just 27% of households within our sample villages had access to electricity and electrification
rates were below those in sub-Saharan Africa. Just four years later that number had jumped
to 64%, with the expansion of the grid and the spread of own solar playing key roles.

In this fast evolving setting, we carried out an RCT varying the price and availability of a
new off-grid technology - microgrid solar. In partnership with HPS, we randomly assigned the
availability and price of microgrids across 100 villages and monitored the evolution of demand
for this electricity source and its competitors via an innovative survey instrument over three
waves. The obvious fruit of our experiment is a demand curve for microgrids. However, this
paper’s key innovation arguably lies in our subsequent combination of the experimental price
variation created by the RCT with a rich dataset comprising both demand- and supply-side
information. This enabled us to estimate a multinomial demand model that captures the
electricity market as a whole, by quantifying market shares and household willingness-to-pay

for the main sources of electricity in rural Bihar (grid, diesel, own solar, and microgrid solar).
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We then employed our model to construct counterfactuals, yielding valuable out-of-sample
predictions for how the market is likely to respond to future innovations in solar technologies
and potential changes in the functioning of the electricity distribution system.

Our reduced-form estimates point to a high price-sensitivity by consumers for microgrids,
with demand dropping to near 0 at unsubsidised prices. Moreover, evidence suggests demand
shifted inward over the course of the experiment, with only 7% of households paying at the
subsidised price at endline. This is in-line with the strong and increasing competition observed
in electricity markets. Despite low take-up, households in subsidised treatment villages in
particular were significantly more likely to own light bulbs, use more electricity, purchase more
mobile phones and spend less money on charging them. We were largely unable to detect
any benefits to household income, children’s reading and math test scores or self-reported
respiratory problems. Overall, this supports the view that solar microgrids are valuable for
certain households but not transformative in the way that some have hoped for.

One of our multinomial demand model’s key results is that richer households, by any
measure, have stronger preferences for grid electricity relative to other sources. This is likely
attributable to the grid’s unique ability to support larger appliances such as televisions and
fans, which richer households demand. It also substantiates the reduced-form result that
households are highly price-elastic — raising the price of the grid by just the cost of two cups
of tea is estimated to reduce electrification by 3 pp.

This finding of high-elasticity implies that anticipated innovation in solar technology and
small changes in government policy, which in turn affect the characteristics of different elec-
tricity sources, may have dramatic effects on the electricity market. These are explored in
our counterfactual analysis. We find that further reductions in solar prices would moderately
increase its market share, mostly arising from adoption by households that would not have
otherwise been electrified. However, when grid is not available, solar market share is limited
to 34% and almost two thirds of households would choose to remain in darkness. Because
willingness-to-pay for off-grid solar is considerably lower when the grid is available, solar ap-
pears to be more of a stop gap — albeit a potentially important one — for households that
do not have access to grid electricity or for poor households who cannot afford full-price grid
electricity. In this sense, solar power is valuable in large part because the grid is incomplete

and dysfunctional.
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Another key contribution of this paper is to rationalize India’s existing system of simul-
taneously subsidizing (explicitly through low official prices or implicitly through tolerance for
rampant theft via informal connections to the grid) and rationing electricity. In particular, our
counterfactual analysis predicts that raising prices or cracking down on non-payment would
devastate electricity access among the rural poor — households are highly price-elastic and
would simply opt to live in darkness. This is at odds with the view that households value
electricity and benefit from the extensive, on-going efforts in developing countries to expand
access to electricity, via either on- or off-grid mechanisms.

Our demand model suggests an alternative interpretation of enthusiasm for solar power for
off-grid, small-scale use in developing countries: the government may want to subsidize off-grid
solar for purely cost reasons. Tolerance for theft, as much as being able to serve higher loads, is
a large part of the grid’s appeal in this setting. Every customer that better solar power takes
away from the money-losing grid increases the state’s producer surplus by reducing losses.
These monetary considerations are large, with solar’s entry saving the government a sum of
money about equal to what the households that take-up solar pay themselves.

A broader question that our static analysis cannot answer is what is the cost of this dysfunc-
tional electricity supply sector in the longer run. There is some evidence that electrification
has large external returns (Lipscomb, Mobarak and Barham, 2013). It is hard to imagine a
large business, for example in manufacturing or services, opening in an area with eleven hours
of daily electricity supply (Allcott, Collard-Wexler and O’Connell, 2016). The combination of
these facts implies that, even if rationing electricity is a statically necessary policy to support
electricity access, it may limit rural growth. Moreover, off-grid solar systems cannot replace

the scale economies of a well-functioning electricity grid.
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7 Figures

Figure 1: Maps of Study Area

(A) Study districts within the state of Bihar, India

(B) Sample villages within study districts
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The figure shows the location of the study area. Panel A highlights the two districts of West Champaran and
East Champaran in northwestern Bihar state where the study villages are located. Panel B shows, within the

two study districts, the locations of sample villages and their treatment assignments. The nearest large towns
are Bettiah and Motihari. The river Gandak in the northwest forms the state border with Uttar Pradesh.
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Figure 2:

Sources of Electricity for Households in Rural Bihar

(A) Baseline: Nov-Dec 2013
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(C) Follow-up: May-June 2017
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The figures show the highly dynamic composition of the electricity market in our sample villages across the
three survey waves. There is considerable heterogeneity in the availability of grid, diesel, and solar across space
and time. In fewer than four full years, the grid electrification rate in our sample rose from 5% to 41%. At the

same time, the share of sample households with electricity from diesel generators fell from 17% to 3%, and the

share with their own solar systems leaped from 5% to 21%.
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Figure 3: Take-Up of Electricity Sources by Survey Wave
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The figure shows the take-up of electricity sources across the three different waves of our household survey.
Each group of bars shows the market shares of a given electricity source across sample households. Diesel is
diesel generators, grid is the state-run electricity grid, microgrid solar is the HPS solar microgrid offered in the
experiment, and own solar is individual household-level solar systems. Within each group of bars the market
share is shown for each of three survey waves. The survey waves are: baseline (starting November, 2013),
endline (starting May, 2016) and follow-up (starting May, 2017).

Figure 4: Market Share of Electricity by Household Income Profiles
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Figure 5: Demand Curve for Microgrid Solar
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The figure plots the share of sample households that paid for the Husk Power Systems (HPS) solar microgrid
at three different times. The horizontal axis is the share of households paying and the vertical axis is the
monthly price. Each line on the figure represents the demand for solar microgrids at a different point in time.
The outer demand curve is for households who paid at any time during the experiment; the middle curve for
households that paid at the midpoint of the experiment (months 16-18); the inner curve is for households that
paid during the endline one survey (starting in May, 2016, month 29). At each point in time household demand
is shown for three different prices. The horizontal line on the figure is an estimate of the amortized monthly
capital costs of the microgrid system per household. This cost does not include costs such as marketing, billing

or operations and maintenance.
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Figure 6: Distribution of Unobserved Mean Utilities (£,:;) by Source and Wave
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The figure plots the quality of different electricity sources over time. The four rows are for different electricity
sources, from top to bottom: grid electricity, diesel, HPS solar microgrids, and household’s own solar systems.
The four columns are for different survey waves, from left to right: baseline (starting November, 2013), endline
one (starting May, 2016) and endline two (starting May, 2017). Each tiled panel in the figure shows the
distribution across villages of source-specific unobserved mean quality &,:; for the row source during the column
survey wave. The vertical axis is the value of mean unobserved quality, where the outside option is normalized
to zero, and the horizontal axis is the density of the historgram. The mean unobserved quality is estimated
in the demand model as the residual that fits source market shares given the observed characteristics of each
source. The unobserved quality is therefore only recovered, and plotted, for source-village-wave combinations
in which a given source was offered (i.e., it is not poiﬁ'ble to infer grid quality when the grid is not present in

a village).



Figure 7: Market Shares under Varying Solar Prices
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The figure shows demand for all electricity source technologies as the price for solar power varies. Each curve
is the predicted market share of an electricity source technology. The horizontal axis gives the price of an HPS
solar microgrid. While the horizontal axis shows the price of an HPS solar microgrid only, we vary the price
of own solar systems proportionately with the microgrid, on the grounds that capital cost reductions in solar
photovoltaic panels or batteries would affect the price of both productions in proportion to their capital share.
The microgrid price shown in the figure ranges from INR 70 up to the choke price of INR 300. Household and

source characteristics and the availability of all sources are fixed at their endline one (mid-2016) levels.
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Market Share (%)

Figure 8: Counterfactuals
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8 Tables

Table 1: Electrification Context Around the World

United Sub-Saharan
States India Africa Bihar
(1) (2) (3) (4)
GDP per capita (USD) 57,467 1,709 1,449 420
kWh per capita 12,985 765 481 122
Electricity access (% of population) 100 79 37 25
kWh per capita / US kWh per capita 1 0.059 0.037 0.009

The table places the income and electricity access in the state of Bihar, India, the site of the study
(column 4), in the context of other areas of the world (columns 1 through 3). The first row is nominal
GDP per capita, the second row is mean electricity consumption per capita, the third row is the
electrification rate and the last row is the ratio of mean electricity consumption per capita to mean
consumption in the United States. The source of data is (World Bank, 2017).
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Table 2: Summary of Electricity Sources, All Panels [NEED CODES]

Grid Diesel Own Solar Microgrid

1) (@) (3) (4)
Panel A. Baseline
Monthly price (Rs.) 73.26 98.88 74.43 200
Load (watts) 322 133 151 28
Supply hours 9.74 3.38 7.92 3.14
Source available (percent) 35.3  62.1 100 .65
Panel B. Endline
Monthly price (Rs.) 59.34 87.50 96.06 164.07
Supply hours 10.01  3.08 5.71 6.16
Source available 58.9 10.1 100 66.4
Ownership of assets
Mobile and/or bulb 1 1 1 0.93
Fan 0.34  0.04 0.10 0.03
TV 0.11 0.01 0.04 0.02
Monthly Income (Rs.) 9222 8547 8760 8493
Panel C. Follow-up
Monthly price (Rs.) 58.71  88.90 66.08 170
Supply hours 12 3.08 5.7 6.16
Source available 76.3 15.4 100 65.7

The table shows characteristics of the various sources of electricity that con-
stitute the rural electricity market we study. Load reported here is based on
household survey appliance ownership, and household survey reports of own
solar watt ratings. In the model, we apply diesel generator survey data to as-
sign load available to households served by each generator, as well as technical
specifications from HPS for panel capacity.
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Table 3: Baseline Covariate Balance

Control Normal Subsidy Diff(N-C) Diff(S-C) FTest
(1) (2) (3) (4) (5) (6)
Panel A. Demographics
Literacy of household head (1-8) 2.44 2.69 2.60 0.25 0.16 1.33
[2.04] [2.15] [2.10] (0.16) (0.15) (0.27)
1031 971 989 2002 2020
Number of adults 3.31 3.50 3.49 0.20* 0.18* 2.19
[1.58]  [1.75]  [1.78] (0.11) (0.11) (0.12)
1052 983 1001 2035 2053
Panel B. Wealth Proxies
Income (Rs. ’000s/month) 7.46 7.32 7.28 -0.14 -0.18 0.068
[6.91  [6.93]  [7.09] (0.57) (0.51) (0.93)
1041 963 983 2004 2024
Number of rooms 2.40 2.55 2.53 0.15 0.13 1.29
[1.32]  [1.45]  [1.45] (0.10) (0.098) (0.28)
1052 981 999 2033 2051
House type (pukka = 1) 0.24 0.27 0.31 0.035 0.074** 2.79*
[0.43] [0.45] [0.46] (0.037) (0.031) (0.066)
1052 983 1001 2035 2053
Owns agricultural land 0.67 0.69 0.67 0.015 0.0022 0.045
[0.47] [0.46] [0.47] (0.056) (0.053) (0.96)
1052 983 1001 2035 2053
Solid Roof (=1) 0.42 0.46 0.51 0.042 0.095** 3.08*
[0.49] [0.50] [0.50] (0.043) (0.039) (0.050)
1052 983 1001 2035 2053
Panel C. Energy Access
Any elec source (=1) 0.25 0.31 0.27 0.061 0.022 0.63
[0.43] [0.46] [0.44] (0.055) (0.050) (0.54)
1052 983 1001 2035 2053
Uses gov. elec (=1) 0.030 0.036 0.091 0.0052 0.060** 2.53*
[0.17] [0.19] [0.29] (0.017) (0.028) (0.085)
1052 983 1001 2035 2053
Uses diesel elec (=1) 0.17 0.21 0.11 0.039 -0.063 1.70
[0.38] [0.41] [0.31] (0.058) (0.046) (0.19)
1052 983 1001 2035 2053
Uses own panel (=1) 0.034 0.050 0.061 0.016 0.027* 1.81
[0.18]  [0.22]  [0.24]  (0.014)  (0.015) (0.17)
1052 983 1001 2035 2053
Uses microgrid solar (=1) 0.0067  0.0081  0.0050 0.0015 -0.0017 0.14
[0.081]  [0.090]  [0.071]  (0.0078)  (0.0054) (0.87)
1052 983 1001 2035 2053

The table reports the balance of covariates in our baseline survey across treatment arms for demographic

variables (Panel A), wealth or demand proxy variables (Panel B) and energy access (Panel C). The first three

columns show the mean values of each variable in the control, normal price and subsidized price arms, with
standard deviations in brackets. The next two columns show the differences between the normal price and
control arms and subsidized price and control arms, respectively, with the standard error of the difference. The
final column shows the F-stat and p-value from a test of the null that the treatment dummies are jointly zero
at baseline. *p < 0.10, **p < 0.05, ***p < 0:01
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Table 4: Two-Stage Least Squares Estimates for Demand for Electricity

Price & Price
OLS Price IV Hours IV First Stage

(1) (2) (3) (4)

Price (Rs. 100) -0.19* -2.08"** -2.07*
(0.11) (0.74) (0.74)
Hours of supply on peak 0.20 0.10 0.19
(0.21) (0.21) (0.27)
Hours of supply off peak  -0.092* -0.077* -0.11*
(0.047) (0.047) (0.060)
Normal Price 0.045
(0.035)
Subsidy Price -0.14%**
(0.031)
Peak Hours Instrument -0.032
(0.044)
Peak Hours Instrument 0.0037
(0.0091)
&t; mean effects Yes Yes Yes Yes
Observations 1000 1000 1000 1000
fstat

The table presents 2SLS estimates of our demand system. The dependent variable is mean
indirect utility at the market x survey wave level retrived from the non-linear first stage.
Peak hours refers to supply of electrricity during the evening (5pm-10pm). The second
column presents two-stage least squares estimates where instrument price with the experi-
mentally varied HPS treatment assignment. In the third column we instrument for price and
peak, off-peak hours. For grid hours, we use predictions from a random forest model (see
appendix for details) as instruments. For off-grid sources, we use the data out instrument
matrix. The last column provides first stage regrressions for the specification in column 2.
First stage regressions for the specification in column 3 are presented in the appendix Table
D11. All regressions control for wave x source mean effects. * p < 0.10, ** p < 0.05, ***

p < 0.01. Standard errors cluster at the village level in parentheses.

Table 5: Price Elasticity of Electricity Sources

Price Elasticity

Grid -0.74
Diesel -1.34
Own Solar -3.48
Microgrid Solar -2.34

The price elasticity for a given technology is calculated
by calculating the percent change in its market share
induced by a 10% increase in its price above its mean
endline price.
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Table 6: Impact of Household Characteristics on Choice Probabilities

Grid Diesel Own Solar Microgrid  None

Number of adults 0.036 0.002 0.001 0.005 -0.045
(0.009) (0.006) (0.001) (0.004) (0.008)

Household income 0.016 0.002 0.001 0.014 -0.034
(0.007) (0.005) (0.001) (0.004) (0.008)

Household owns land 0.049  -0.023 0.003 0.008 -0.037
(0.018) (0.010) (0.003) (0.009) (0.016)

Household head literacy  0.026 0.008 -0.001 0.002 -0.036
(0.008)  (0.005) (0.001) (0.004) (0.007)

Pukka (solid) house 0.077  -0.004 -0.002 -0.006 -0.065
(0.023) (0.013) (0.003) (0.008) (0.019)

Solid roof 0.107  -0.007 0.005 -0.007 -0.098
(0.025) (0.013) (0.003) (0.007) (0.018)

Number of rooms 0.026 0.011 0.003 0.003 -0.043
(0.008) (0.005) (0.001) (0.004) (0.008)

The table shows the discrete effects of changes in household observable characteristics
(in rows) on the probability the household will purchase different electricity sources (in
columns). The household characteristics are from our survey. The changes in choice
probabilities are calculated with the demand model, for which the estimated coefficients
are presented in Appendix Table D11. Each cell entry is the change in choice probability
for a poor household from increasing the row characteristics. For discrete household
characteristics, the increase is from zero to one. For continuous household characteristics,
the increase is of one standard deviation. Appendix Table D6 describes the statistical
profile of a poor household and Appendix Table C3 shows the magnitude of changes in
household characteristics for each variable. Standard errors are constructed using the
delta method.
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Table 7: The Value of Electrification under Counterfactual Policies

Market shares

Surplus (INR per household per year)

Consumer
Grid Diesel Own solar Microgrid None BPL APL All  Producer Total
(1) (2) (3) (4) () () B VO B ) 9) (10)
Panel A: Fit of model
Data 24 3 7 10 57 - - - - -
Model 24 3 7 10 57 1849 2208 1939 -497 1442
Panel B: Value of solar innovation
Solar nowhere 29 3 0 0 68 1087 1513 1193 -612 582
Solar everywhere 23 2 13 10 51 1801 2277 1920 -492 1428
Solar cost falls 21 1 17 16 45 2199 2654 2313 -441 1872
Further solar innovation 17 1 36 8 39 3737 4185 3849 -349 3500
Panel C: Grid Extension
No grid or solar 0 5 0 0 95 58 120 74 0 74
Grid nowhere 0 3 20 13 63 1039 1312 1108 0 1108
Grid everywhere 39 1 8 9 44 2342 2710 2434 -803 1631
Extra 2 Hours 29 2 12 10 48 2037 2568 2170 -736 1434
Grid everywhere and solar cost falls 34 1 11 14 41 2649 3024 2743 -708 2035
Grid everywhere, increase peak hours, A5 0 7 19 36 3020 3412 3118 1115 92004
and solar cost falls
Panel D: Theft Reductions

Remove theft by raising grid price 5 3 19 13 61 1217 1543 1299 -52 1247
Increase peak supply and raise prices 21 2 14 11 52 1749 2192 1860 -497 1363

The table presents market shares and surplus under counterfactual changes in the supply side of the electricity market. All counterfactuals are calculated
using our demand model estimates. The counterfactual scenarios are laid out in Section 77 of the text and the detailed assumptions behind the counterfactuals
are in Appendix Table ??. In Panel A, we compare the market shares in the data at the time of the endline one survey (mid-2016) to market shares in
the model. Panel A, row 2 is the baseline scenario for surplus in the status quo. In Panel B we vary the availability, price, and quality of off-grid solar.
In Panel C we vary the availability and quality of the grid. In Panel D we vary the pricing and supply of the grid. Within each panel, we report surplus
divided into several categories. Consumer surplus is surplus relative to the outside option of no electricity. We report mean surplus per household per year
for households below the poverty line (BPL), above the poverty line (APL) and all households. BPL is the government’s official designation of poverty.
Producer surplus is the surplus of the grid only. To calculate grid surplus we use the mean consumption of 60 kWh per month in administartive billing data
and the power supply cost of INR 3.88 per kWh from the distribution utility’s 2014-15 tariff order. At these costs the utility loses money on each customer
so producer surplus is negative. The Panel D, row 1 counterfactual has a grid price of INR 140 and the Panel D row 2 counterfactual a grid price of INR

110 per month.



Appendix A [NOT FOR PUBLICATION]

A Appendix: Data

a Sampling and timeline

DESCRIBE EXPERIMENTAL TIMELINE HERE.
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Figure A1l: Data Collection Timeline
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Household survey, microgrid administrative data, and grid administrative data are each at the household-level. We connect these 3 sources
together by using unique household identification numbers. Finally, we enrich our dataset by joining in diesel operator data at the village-level.
In Aug 2013, we conducted a customer identification survey ("CIS") for the villages in our study, which was subsequently used to assign villages
to treatment and control groups and also served as the basis from which we drew our household sample. In each of the household baseline
and endline surveys, we collected data that covered demographics (e.g. literacy and number of adults per household), wealth proxies (e.g.
income, size and structure of house and ownership of agricultural land), electrification status (e.g. all sources from which the household procured
electricity and payments for each source), and quality of electricity sources (e.g. load and daily hours of supply). Moreover, we also recorded
ownership of assets such as mobile phones, bulbs, fans and TVs, and tracked select measures of education and health, namely children’s reading
and math test scores and self-reported respiratory problems. The household follow-up survey was a shorter survey in which we recorded data
on demand for and use of different electricity sources. We also collected household consumer IDs in this survey, which facilitated household
matching across datasets and allowed us to distinguish formal (i.e. paying) consumers from informal (i.e. non-paying) consumers.
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Appendix B [NOT FOR PUBLICATION]

b Construction of instrument for hours of supply

The imputation of missing feeder supply data is done in two steps.

1. If supply data for a village is missing for a given survey wave but some data is available for that village
in the +/ — 6 month window, we replace the missing observation with the temporal mean of available

data in this time window.

2. If a village has missing data for all months in the 4+/ — 6 month time window, we use a random forest

(RF) algorithm to impute missing hours of supply for that village.

RF has the advantage that it necessarily yields internal predictions and so imputed hours of supply are
sensibly bounded. We include the following predictor variables (features) in the RF model: (1) hours of supply
of the three nearest villages for which we do have data, (2) division fixed effects, (3) polynomials upto degree
5 of district-demeaned latitude and longitude of each village, and (4) interactions of division fixed effects with
each of the demeaned lat-lon polynomials. Hence, all the features that go into the RF model are plausibly
exogenous to our demand model. We exclude unelectrified villages (supply for these is replaced zero) from the
sample because we don’t want to use data of unelectrified villages to impute missing supply data for electrified
villages. For instance, there are 56 electrified villages in the endline survey which have non-mising data. This
is our master sample for the RF model. We randomly select 80% of this sample (45 obs) as the training sample
and the remaining 20% as the testing sample (11 obs). The RF model is fit on the training sample.

Figures 77 and 7?7 describe our prediction model. The main parameter to tune in a random Forest model
is the number of candidate variables to select from at each split. To do this, we start with 2 variables and
increase by a step factor of 1.5 until the improvement in out-of-box (OOB) error is less than one percent. As
shown in panel A of Figure 77, for the endline data, this yields 6 variables. Figure 77 shows the most relevant
variables chosen by the model.

The RMSE of our prediction model is 1.9 hours. We take the predictions from this model and use them
to impute missing observations in administrative grid supply data.

In one our second-stage two-stage least squares specifications (Table 4, column 3), we instrument for peak
and off-peak hours of supply of electricity, in addition to price. Microgrid, diesel, and own solar have constant
supply hours in all villages. For microgrid and diesel, this is 0 for off-peak hours and 5 (maximum) for peak
hours. For own solar, it is the global median of the peak and off-peak hours for that source. For grid, supply is
observed from administrative log-books at the feeder level, mapped to sample villages. We use our predictions

from the above random forest model as the instrument for grid supply.

B Appendix: Impact analysis of solar microgrids

The demand curve reflects household willingness to pay for off-grid solar electricity. This

willingness to pay reflects perceived household benefits from having a connection. There may
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Table B1: Household Electricity Use Outcomes

Light Bulb Daily Hours of Mobile Phone Price of
Ownership (=1) Electricity Use ~ Ownership ~ Full Charge (Rs.)
(1) (2) (3) (4)
Subsidy treat village (=1) 0.15*** 0.94*** 0.034** -0.67*
(0.047) (0.24) (0.014) (0.24)
No subsidy treat village (=1) 0.098** 0.52** 0.022 -0.46*
(0.044) (0.20) (0.013) (0.23)
Baseline Controls Yes Yes Yes Yes
Control mean 0.32 1.16 0.88 4.72
Observations 3001 2868 3001 964

The table shows regressions of ownership of LED lamps and one mobile charging point and the

use of electricity on treatment status. Households in the treatments got and used electricity

microgrids and these appliances. The specifications include baseline electricity source indicators,

baseline monthly income, and baseline equivalent of outcome variable as controls. Standard

errors clustered at the village level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
also be benefits of solar power that are not perceived or valued by the household when choosing
whether to buy microgrids. For example, improved lighting can lead to children having more
time to study at home, which may or may not be valued by parents. There may also be intra-
household spillovers from reduced kerosene consumption and indoor air pollution (Barron and
Torero, 2017).

We estimate the impact of access to microgrid electricity on a battery of social outcomes.

We begin by estimating a reduced-form model of the following specification:

Yivt = @ + By Normal Price, + BsSubsidized Price, + X;0 + €t (8)

Here, ;¢ is the outcome of interest for household ¢ in village v at time t. NormalPrice,
and Subsidized Price, are dummies that take the value 1 when village v was assigned to solar
microgrids at regular and subsidized prices, respectively, and x; is a vector of controls from
the baseline survey. The outcome variables we examined include measures of electricity access,
adult and child respiratory problems, reading and math test scores and household income.

Households in both treatment arms got and used electricity microgrids. The microgrid
powered two low-wattage LED lamps and one mobile charging point, which was provided with
every connection. Table Bl reports regressions of ownership of various appliances and use of
electricity on treatment status. Assignment to a subsidy treatment village increases light bulb
ownership by 15 percentage points (standard error 4.7 pp) relative to an ownership rate of 32

percentage points in the control group at baseline (column 1). Subsidy treatment households
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Table B2: Household Income, Education and Health Outcomes

Monthly income  Standardized test score  Respiratory problems (=1)

(INR ’000s) Reading Math Adults Children
(1) (2) (3) (4) (5)
Panel A. Reduced Form
Subsidy treat village (=1) 0.18 0.11* 0.095 0.026 0.012
(0.31) (0.061) (0.065) (0.021) (0.0082)
Normal treat village (=1) 0.63* 0.020 0.071 0.017 0.0041
(0.33) (0.061) (0.062) (0.018) (0.0082)
Panel B. Instrumental Variables
Hours of electricity 0.15 0.22 0.21 0.027 0.014
(0.35) (0.24) (0.23) (0.027) (0.012)
Baseline Controls Yes Yes Yes Yes Yes
Control mean 7.5 0 0 0.14 0.024
Observations 2692 646 637 2710 2669

The table shows the effects of provision of solar microgrids on social and economic outcomes, for health,
education and test scores. Panel A of the table is the reduced-form or intent-to-treat effect of solar microgrids
for these outcomes, and Panel B is the instrumental variable estimate of the coefficient on hours of electricity
using the two treatment assignment dummies as instruments. We find no evidence that respiratory problems
decrease for adults or children (Panel B, columns 4 and 5). The predominant source of indoor air-pollution
comes from cooking, which is unaffected by the provision of microgrids, and we do not find significant declines
in kerosene expenditure (not reported). Effects on reading test scores are positive but imprecisely estimated
(columns 2 and 3). For example, we estimate that an hour of additional electricity use increase children’s
reading scores by 0.22 standard deviations (standard error 0.22 standard deviations). This is a fairly large
standardized effect but imprecise due to low first-stage take-up and the children tested being only a subsample
of the overall experiment. We cannot rule out a zero effect or a significant positive effect of lighting on child test
scores. Finally we find that electricity has a null effect on household income of INR 150 per month (standard
error 350), which is small compared to baseline income of INR 7,500 per month. Test score results are at
the child level. The regressions include baseline electricity source indicators, baseline monthly income, and
baseline equivalent of outcome variable controls. Standard errors clustered at the village level in parentheses.
*p<0.10, " p < 0.05, *** p < 0.01

increased hours of electricity use by an estimated 0.94 hours per day (standard error 0.24 hours
per day) relative to 1.16 hours in the control group at baseline (column 2). The effects of being
assigned to a normal price village are smaller but have the same sign and are also statistically
significant. Households assigned to a subsidy treatment village are also more likely to own a
mobile phone, by 3.4 percentage points relative to an already high control group ownership
rate of 88 percentage points (column 3) (implying that control households are 2.75 times as
likely to own a mobile phone as a light bulb). Finally, assignment to a subsidy treatment
village also decreases the amount of money spent charging one’s mobile phone, which makes
sense because households without electricity will typically charge their mobile phones at a
shop for a higher per-unit cost of energy.

We therefore find that when solar microgrids are made available, households use more

electricity, purchase more mobile phones and light bulbs, and spend less money charging
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phones. As we would expect, these effects are more pronounced when prices are subsidized.
With regards to social outcomes such as income, education and health, we find little evidence
that the electricity provided by solar microgrids had a large impact (Table B2). MORE HERE
ON MEASUREMENT: LARGE BUT NOISY ESTIMATES FOR EDUCATION In summary,
while the effects of electrification by solar microgrids were not transformative, households still

valued off-grid solar for lighting and other energy services.

61



Appendix C [NOT FOR PUBLICATION]

C Appendix: Additional results

Table C3: Definition of Household Characteristics and Magnitude of Marginal Change

Characteristic  Definition Marginal Change
Income Monthly income 1 SD (INR 6486)
Land Indicator for agricultural land Otol

Roof Indicator for solid roof Otol

Pukka Indicator for pukka house 0Otol

Rooms Number of rooms in the house 1 SD (1.32 rooms)
Adults Adults in the HH 1 SD (1.82 persons)
Literacy Literacy of household head (1-8) 1 SD (2.04 years)

The table shows the magnitude of the change in household covarates for which
the marginal impact on household choice probabilities is estimated in Table
D7 and Table D8. Literacy classification: 1 =not literate, 2= Aanganwadi, 3
= literate but below primary, 4 = literate till primary, 5 = literate till middle,
6 = literate till secondary, 7= literate till higher secondary, 8 = graduate and

above

Table C4: Summary Statistics of Household Characteristics

Mean Median Q1 Q3 SD Min Max

Number of rooms in the house 2.45 2 2 3 1.32 1 11
Indicator for pukka house 0.32 0 0 1 0.47 0 1
Indicator for agricultural land 0.63 1 0 1 0.48 0 1
Indicator for solid roof 0.51 1 0 1 0.50 0 1
Literacy of household head (1-8)  2.48 1 1 4 2.04 1 8
Adults in the HH 3.67 3 2 5 1.83 1 15
Monthly income (INR) 7575.5 6000 4000 8500 6486.2 0  65000.0
Observations 8822
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Table C5: Summary Statistics by BPL Status

BPL APL BPL-APL
Rooms 2.38 2.58 -0.20%**
[1.18] [1.50] (0.054)
Pukka house 0.33 0.42 -0.088***
[0.47] [0.49] (0.020)
Agricultural land 0.58 0.66 -0.088***
[0.49] [0.47] (0.021)
Solid roof 0.51 0.58 -0.069***
[0.50] [0.49] (0.021)
Literacy 2.25 3.01 -0.76%**
[1.87] [2.31] (0.085)
Income 0.73 0.87 -0.14™
[0.58] [0.74] (0.027)
Number of adults in household 3.76 3.88 -0.12
[1.83] [2.02] (0.080)
Observations 2186 731

*p < 0.10, * x p < 0.05, * x xp < 0.01
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D Appendix: Robustness of demand estimates

a Marginal effects for alternative household profiles

DESCRIBE PROFILES AND COMPARE RESULTS

Table D6: Household Profile for Marginal Effects

Profile Rooms Pukka Land Roof Literacy Adults Income (INR)

Poor 1 0 0 0 1 2 3750
Median 2 0 1 1 1 3 6000
Rich 3 1 1 1 5 5 9500
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Table D7: Impact of Household Characteristics on Choice Probabilities (Median
Household)

Grid Diesel Own Solar Microgrid  None

Number of adults 0.047  -0.001 0.001 0.003 -0.049
(0.010) (0.003) (0.002) (0.004)  (0.008)
Household income 0.019 0.000 0.001 0.014 -0.034
(0.010) (0.003) (0.002) (0.005)  (0.008)

Household owns land - - - - _

Household head literacy  0.036 0.004 -0.002 0.001 -0.038
(0.010) (0.003) (0.002) (0.004)  (0.008)

Pukka (solid) house 0.098  -0.006 -0.006 -0.011 -0.075
(0.025) (0.008) (0.005) (0.009)  (0.020)

Solid roof - - - - -

Number of rooms 0.035 0.005 0.004 0.001 -0.046
(0.010) (0.004) (0.002) (0.005) (0.009)

The table shows the discrete effects of changes in household observable characteristics

(in rows) on the probability the household will purchase different electricity sources (in
columns). The household characteristics are from our survey. The changes in choice
probabilities are calculated with the demand model, for which the estimated coefficients
are presented in Appendix Table D11. Each cell entry is the change in choice probability
for a poor household from increasing the row characteristics. For discrete household
characteristics, the increase is from zero to one. For continuous household characteristics,
the increase is of one standard deviation. Appendix Table D6 describes the statistical
profile of a poor household and Appendix Table C3 shows the magnitude of changes in
household characteristics for each variable. Standard errors are constructed using the

delta method.
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Table D8: Impact of Household Characteristics on Choice Probabilities (Rich Household)

Grid Diesel Own Solar Microgrid  None
Number of adults 0.036 -0.003 -0.000 0.000 -0.033
(0.007) (0.003) (0.001) (0.004) (0.005)
Household income 0.011 -0.001 0.000 0.011 -0.022
(0.008) (0.003) (0.001) (0.005) (0.006)

Household owns land - - - - -
Household head literacy  0.028 0.002 -0.002 -0.001 -0.026
(0.008) (0.003) (0.001) (0.003) (0.004)

Pukka (solid) house - - - . -

Solid roof - - - - -
Number of rooms 0.026 0.003 0.002 -0.001 -0.030
(0.009) (0.004) (0.002) (0.004) (0.006)

The table shows the discrete effects of changes in household observable characteristics

(in rows) on the probability the household will purchase different electricity sources (in

columns). The household characteristics are from our survey. The changes in choice

probabilities are calculated with the demand model, for which the estimated coefficients

are presented in Appendix Table D11. Each cell entry is the change in choice probability

for a poor household from increasing the row characteristics.

For discrete household

characteristics, the increase is from zero to one. For continuous household characteristics,

the increase is of one standard deviation. Appendix Table D6 describes the statistical

profile of a poor household and Appendix Table C3 shows the magnitude of changes in

household characteristics for each variable. Standard errors are constructed using the

delta method.

b Alternative nesting structures
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Table D9: First stage results choice-specific household characteristics and nest-similarity parameter

By Multinomial Logit (Grid, diesel, own solar) (Grid, diesel, HPS) (Grid, Own solar, HPS) (Grid) & (Grid, Own solar) (Grid/Diesel)
]

& (HPS) & (Own solar) & (Diesel) (off-Grid) & (diesel, HPS) & (Solar)
Grid x Income 0.21 0.19 0.21 0.21 0.19 0.21 0.20
(0.06) (0.05) (0.06) (0.06) (0.07) (0.06)
Diesel x Income 0.14 0.16 0.14 0.14 0.21 0.14 0.14
(0.08) (0.06) (0.09) (0.08) (0.14) (0.08)
Own solar x Income 0.17 0.18 0.17 0.17 0.21 0.17 0.19
(0.07) (0.06) (0.07) (0.07) (0.14) (0.08)
HPS x Income 0.49 0.48 0.49 0.48 0.22 0.49 0.43
(0.12) (0.11) (0.14) (0.13) (0.13) (0.14)
Grid x Land 0.24 0.20 0.24 0.24 0.24 0.24 0.24
(0.09) (0.08) (0.09) (0.09) (0.09) (0.09)
Diesel x Land -0.15 -0.09 -0.15 -0.15 0.04 -0.15 -0.15
(0.12) (0.11) (0.12) (0.12) (0.15) (0.12)
Own solar x Land 0.15 0.18 0.15 0.15 0.07 0.15 0.15
(0.11) (0.09) (0.11) (0.12) (0.17) (0.11)
HPS x Land 0.22 0.22 0.22 0.22 0.06 0.22 0.16
(0.17) (0.17) (0.17) (0.17) (0.17) (0.14)
Grid x Adults 0.12 0.12 0.12 0.12 0.12 0.12 0.12
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Diesel x Adults 0.09 0.09 0.09 0.09 0.09 0.09 0.09
(0.04) (0.03) (0.04) (0.04) (0.06) (0.03)
Own solar x Adults 0.09 0.10 0.09 0.09 0.09 0.09 0.09
(0.03) (0.02) (0.03) (0.03) (0.06) (0.03)
HPS x Adults 0.09 0.09 0.09 0.09 0.10 0.09 0.09
(0.04) (0.04) (0.04) (0.04) (0.04) (0.03)
Grid x Pukka 0.42 0.36 0.42 0.42 0.42 0.42 0.43
(0.10) (0.09) (0.10) (0.10) (0.10) (0.10)
Diesel x Pukka 0.13 0.20 0.13 0.13 0.10 0.13 0.17
(0.14) (0.11) (0.14) (0.14) (0.16) (0.15)
Own solar x Pukka 0.12 0.16 0.12 0.12 0.10 0.12 0.11
(0.12) (0.10) (0.12) (0.12) (0.15) (0.12)
HPS x Pukka -0.03 -0.03 -0.03 -0.01 0.11 -0.03 0.07
(0.19) (0.19) (0.21) (0.21) (0.20) (0.18)
Grid x Lit 0.10 0.08 0.10 0.09 0.10 0.10 0.10
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Diesel x Lit 0.09 0.08 0.09 0.09 0.05 0.09 0.09
(0.03) (0.02) (0.03) (0.03) (0.06) (0.03)
Own solar x Lit 0.02 0.05 0.02 0.02 0.05 0.02 0.02
(0.02) (0.02) (0.02) (0.03) (0.03) (0.02)
HPS x Lit 0.05 0.05 0.05 0.05 0.05 0.05 0.05
(0.04) (0.04) (0.04) (0.04) (0.04) (0.03)
Grid x Roof 0.58 0.52 0.58 0.57 0.58 0.58 0.57
(0.10) (0.09) (0.10) (0.10) (0.10) (0.10)
Diesel x Roof 0.20 0.28 0.20 0.20 0.26 0.20 0.20
(0.13) (0.11) (0.13) (0.13) (0.17) (0.13)
Own solar x Roof 0.41 0.44 0.42 0.41 0.28 0.42 0.36
(0.12) (0.09) (0.12) (0.12) (0.29) (0.13)
HPS x Roof -0.00 0.00 0.00 0.02 0.26 0.00 0.06
(0.18) (0.18) (0.19) (0.20) (0.18) (0.22)
Grid x Rooms 0.13 0.14 0.13 0.13 0.13 0.13 0.13
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Diesel x Rooms 0.15 0.15 0.15 0.15 0.16 0.15 0.15
(0.05) (0.03) (0.05) (0.05) (0.10) (0.04)
Own solar x Rooms 0.18 0.17 0.18 0.18 0.16 0.18 0.18
(0.04) (0.03) (0.04) (0.04) (0.11) (0.04)
HPS x Rooms 0.10 0.10 0.10 0.10 0.16 0.10 0.12
(0.07) (0.07) (0.07) (0.06) (0.07) (0.06)
o1 - 0.55 0.01 0.06 0.95 0.01 0.17
(0.20) (0.28) (0.33) (0.50) (0.34)
o2 - - - - - 0.01 0.42
(0.39) (0.54)
o9 - - - - - 0.39 0.54
Number of Observations 8822.00 8822.00 8822.00 8822.00 8822.00 8822.00 8822.00
Log likelihood -5791.35 -5789.35 -5791.39 -5791.34 -5789.26 -5791.41 -5791.32
LR test statistic - 4.01 -0.07 0.03 4.20 -0.10 0.08
LR test p value - 0.05 1.00 0.85 0.04 1.00 0.78

The likelihood Ratio test statistic: LR = —2{LL(constrained) — LL(Qunconstrained)} Each of the nested-logit specifi-
cations (columns 2 through 7) are tested against the constrained multinomial logit specification in column 1. LR is
distributed x2 with degrees of freedom equal to the number of constraints on 0. LL is the negative of the optimized
objective function in MATLAB (which is defined as the negative of the sum of the individual household contributions to
log of the likelihood function).

67



Appendix D [NOT FOR PUBLICATION]

Table D10: Two-Stage Least Squares Estimates for Demand for Electricity [WILL BE
UPDATED)]

(1) 2) (3) (4)
(Grid, Diesel, Microgrid) (Grid, Diesel)  (Grid)  Multinomial

(Own Solar) (Solar) (Off-Grid) Logit
Price (Rs. 100) -2.051%** -2.082%** -2.116** -1.918**
(0.769) (0.775) (0.876) (0.746)
Hours of supply on peak 0.263 0.401 0.439* 0.437*
(0.243) (0.259) (0.261) (0.255)
Hours of supply off peak -0.110** -0.139** -0.145** -0.144***
(0.0534) (0.0567) (0.0571) (0.0555)
&; mean effects Yes Yes Yes Yes
Observations 1000 1000 1000 1000

The table presents 2SLS estimates of our demand system for different first-stge nest specifications. The
dependent variable is mean indirect utility at the market X survey wave level retrived from the non-linear
first stage. The first column, uses our preferred first stage nest-specification of grouping grid, diesel, and
HPS in one nest and own-solar in its own nest. The estimates in the first column are the same as column
2 of Table 4. The second column uses a first-stage model with grid and diesel in one nest and both solar
technologies in another. In the third column, we group grid in its own nest and all off-grid technologies in
a second nest. In the last column, we use the mean indirect utilities derived from a multinomial logit first
stage. We instrument price with our experimentally varied HPS treatment assignment. Peak hours refers
to supply of electrricity during the evening (5pm-10pm). All regressions control for wave X source mean

effects. * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors cluster at the village level in parentheses.
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Table D11: First-Stage of 2SLS Estimates for Demand for Electricity

Price First Stage  Price First Stage  Peak hours Off-peak hours
(only price IV)  (price and hours IV) First Stage  First Stage

(1) (2) (3) (4)
Normal Price 0.045 0.045 0.0050 -0.0046
(0.035) (0.035) (0.0050) (0.030)
Subsidy Price -0.14*** -0.14%** 0.0075 0.014
(0.031) (0.031) (0.0063) (0.031)
Hours of supply on peak -0.045
(0.045)
Hours of supply off peak 0.0067
(0.012)
Peak Hours Instrument -0.032 0.94** 0.19
(0.044) (0.063) (0.15)
Peak Hours Instrument 0.0037 0.032** 0.88***
(0.0091) (0.013) (0.030)
&t; mean effects Yes Yes Yes Yes
Observations 1000 1000 1000 1000

fstat
The table presents the first stage estimates of the 2SLS estimates provided in column 2 and 3 of Table 4.
The construction of the instrument for hours of supply is outlined in Section b. * p < 0.10, ** p < 0.05,

ok ok

p < 0.01. Standard errors cluster at the village level in parentheses.
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E Appendix: Counterfactual scenarios

Figure E2: Microgrid Solar Price under Current and Counterfactual Capital Costs
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In our counterfactuals, we consider reductions in cost for solar photovoltaics and
for batteries. We assume a 55% reduction in cost of solar PV in line with the
National Renewable Energy Laboratory’s for 2022. For batteries, we assume a cost

reduction of 75% in accordance with the US Department of Energy’s 2022 goal.
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Table E12: Counterfactual Analysis: Assumptions

Scenario Source availability Source hours (peak) Source price
Panel A: Theft Reductions

Data

Model Endline 1 Endline 1 Endline 1

Solar nowhere

Solar everywhere

Solar cost falls

Further solar
innovation

Grid nowhere

Grid Everywhere

Grid 2 extra peak hours

Remove theft by raising
grid price

Increase peak supply
and raise prices

Endline 1 for grid and
diesel, solar nowhere
Endline 1 for grid and
diesel, solar everywhere

Endline 1 for grid and
diesel, solar everywhere

Endline 1 for grid and
diesel, solar everywhere

Endline 1 for solar and
diesel, grid nowhere

Grid everywhere, endline 1
for diesel, solar everywhere

Endline 1 for grid and
diesel, solar everywhere

Endline 1 for grid and
diesel, solar everywhere

Endline 1 for grid and
diesel, solar everywhere

Panel B: Value of solar innovation

Endline 1 Endline 1
Endline 1 Endline 1
Reduction in HPS price from INR 170 to INR 120, according to the
Endline 1 "solar cost falls" scenario in Figure 7. Own solar price is proportionally
decreased.

Own solar: 55% reduction in solar panel cost (NREL Fig 8, low
estimates, pp. 17) and a 75% reduction in batteries (DOE, pp. 2).
Panel is 36% of total cost and batteries is 19% of total cost. These
numbers imply a reduction in total own solar price by 34%. Mean own
solar price is reduced by 34%. All other solar costs (meter charger,
wiring, labour, transport, other are assumed constant). Mean HPS
price is similarly reduced by 34%. Prices of all other sources are
according to endline 1.

Panel C: Grid Extension

Endline 1

Endline 1 Endline 1

Endline 1 Endline 1

Two additional peak
hours for grid,

endline 1 peak hours
for all other sources.

Panel D: Theft Reductions

Grid at INR 140, all else at endline 1. The grid price was derived as

follows: grid price in the model estimation is presently defined as the

reported bill value in the surveys multiplied by payment rate, where
Endline 1 payment rate is the mean of the responses to “Do you pay your bill?" in
the endline 2 survey. We therefore define the “remove theft"
counterfactual by using the reported bill value as full price un-scaled by
payment rate. This yields INR 140."
Grid at INR 95 everywhere, all else at endline 1. INR 95 is derived as
follows: grid peak supply is set to 5 hours everywhere. Price is set so
that total loss per HH in the endline sample is equal to that obtained
in row 3 (model with solar everywhere).

Endline 1

Grid peak hour = 5
hours everywhere,
all else at endline 1

Note: Household characteristics and source off-peak hours are unchanged (at their endline 1 levels) across all counterfactual cases and hence

omitted from the table.

o xipueddy

INOLLYDITINd MO LON]



	Introduction
	Background and Data: The Electricity Landscape in Bihar 
	Data 
	Sources of electricity
	Grid electricity
	Diesel
	Own Solar
	Microgrid Solar

	Bihar's electricity transformation 

	Demand for Solar Microgrids 
	Experimental Design
	Results

	Model of Demand for All Electricity Sources 
	Specification
	Estimation 
	Results 
	Modeling choices

	The Value of Electrification
	Innovation in solar power
	Improving grid access 
	Rationalizing grid policy

	Conclusion
	Figures
	Tables
	Appendix: Data 
	Sampling and timeline
	Construction of instrument for hours of supply 

	Appendix: Impact analysis of solar microgrids
	Appendix: Additional results 
	Appendix: Robustness of demand estimates 
	Marginal effects for alternative household profiles
	Alternative nesting structures

	Appendix: Counterfactual scenarios 

