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per degreeCelsius. This response appears to be driven by a reduction in
the output elasticity of labor. Our estimates are large enough to explain
previously observed output losses in cross-country panels.
I. Introduction
Recent research has uncovered a systematic negative correlation between
temperature and aggregate national output, especially in tropical devel-
oping countries (Dell, Jones, andOlken 2012; Burke, Hsiang, andMiguel
2015). High temperatures are associated with reduced crop yields as well
as lower output in nonagricultural sectors.1 Explanations for this relation-
ship include heat stress on workers and temperature-related increases in
mortality, conflict, and natural disasters.2 Establishing and quantifying the
relative importance of thesemechanisms is crucial for identifying possibil-
ities of adapting to a hotter world.
In this paper, we focus on understanding and quantifying the role of

heat stress in mediating the temperature-output relation. Our knowledge
of human physiology suggests that workers should respond fairly quickly
whenmade towork inuncomfortable temperatures.Heat impacts on labor
can therefore be identified both in daily or weekly output and in data at
higher levels of aggregation. This distinguishes heat stress from many al-
ternative mechanisms. We use several microdata sets and a nationally rep-
resentative panel of manufacturing plants to estimate the effects of high
temperatures on labor. Althoughwe focus on Indianmanufacturing, since
heat stress is a universal physiological mechanism, the implications of our
results may extend to other sectors and countries.
There are two channels through which high temperatures might affect

factory workers. They may produce less while at work and be absent more
often.We assemble high-frequency data on workers in three differentman-
ufacturing settings—cloth weaving, garment sewing, and steel products—
and separately identify these two effects. We find that the output of indi-
vidual workers and worker teams declines on hot days as well as in weeks
with more hot days. Absenteeism is increasing in both contemporaneous
temperatures and temperatures experienced over the preceding week.
Stronger effects are visible for paid leave, with a weaker temperature-
absenteeism relationship for unpaid leave. Climate control in the work-
place eliminatesproductivitydeclinesbutnot absenteeism,presumablybe-
cause workers remain exposed to high temperatures at home and outside.
or evidence on yields, see Mendelsohn and Dinar (1999), Auffhammer, Ramanathan,
incent (2006), Schlenker and Roberts (2009), Lobell, Schlenker, and Costa-Roberts
), and Gupta, Somanathan, and Dey (2017).
siang (2010) discusses heat stress, Hsiang, Burke, and Miguel (2013) identify a
erature-conflict relationship, and Burgess et al. (2017) study effects on mortality.
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To examine whether the temperature effects for workers in these firms
are more generally reflected in India’s factory sector, we use a 15-year na-
tionally representative panel of manufacturing plants. We find that the
value of plant output declines in years with more hot days. Annual output
is predicted to fall by 2.1% if every day warms by 17C. We use a Cobb-
Douglas specification to show that temperature-induced reductions in
the output elasticity of labor, rather than capital or other factors, drive this
response. This is not surprising, given that industrial air-conditioning was
rare in India even in 2012, the last year covered by our data. The demand
for large commercial units was a small fraction of the demand in both
China and the United States, in spite of India being the warmest of these
three countries.
After presenting our main results, we consider some alternatives to the

heat stress channel, including natural disasters, power outages, and con-
flict. For the years covered by our plant panel, we collect data on instances
of flooding, power shortages, and workdays lost in all recorded industrial
disputes. We find that these variables cannot account for the estimated ef-
fect of temperature on output. Other possible explanations for the nega-
tive effect of high temperatures on manufacturing plant output include
temperature effects acting through input prices and via linkages with ag-
riculture. However, we find no effect of temperatures on input prices after
controlling for state and year fixed effects, so this cannot account for our
results. Also, we find that output declines occur acrossmanufacturing sec-
tors, so agricultural linkages (which vary greatly across sectors) are unlikely
to be an important part of the explanation.
Ourfinal set of results are at a yet higher level of aggregation, the Indian

district. Official data on gross domestic product (GDP) in themanufactur-
ing sector is available for Indian districts for the period between 1998 and
2009. We use a panel of 438 districts with unchanged boundaries over this
period to directly estimate the impact of a 17C increase in temperature on
district output. We estimate declines of 3% per degree Celsius. This is
comparable to the plant response.
To situate these findings within the context of the country-level relation-

ships that motivate this paper, it is helpful to compare the temperature-
output relationship estimated at several different levels of aggregation.
Putting together our results from worker, plant, and district data, we find
that effect sizes in all three cases are similar. Strikingly, these effects are
large enough to account for the country-level response to temperature ob-
served in the literature. Although this does not imply that heat stress is the
sole reason for country-level decreases in manufacturing-sector output
during hot years, it does indicate that this may be amuchmore important
mechanism than previously believed.
Notwithstanding the importance of these temperature effects, adapta-

tion through climate control is limited. For example, the cloth-weaving
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firms we study are labor intensive but do not use climate control. Given
the costs of electricity, value added per worker may be too low to justify
these investments. In the garment firms, value addition by workers is
greater, and we see partial climate control. In our national plant panel,
we find that temperature effects on output fall over time, perhaps the re-
sult of investments in adaptation.
If heat stress plays an important role in reducing output, then firms

that do make costly climate-control investments should strategically allo-
cate these resources toward tasks that are labor intensive and add signifi-
cant value. We surveyed the management of 150 plants in the diamond-
processing industry to test these hypotheses.We find that air-conditioning
is selectively used in rooms with activities that are both labor intensive and
critical in determining diamond quality.
The remainder of this paper is organized as follows. Section II summa-

rizes the physiological evidence on heat stress. Section III describes our
data sources. Our main results are in section IV. In section V, we compare
effect sizes from our worker, plant, and district-level data and show that
these are of similar magnitude and consistent with country-level estimates
in the literature. Section VI examines the adoption of climate-control in-
vestments within firms. Section VII discusses alternative explanations and
the robustness of our main results. Section VIII concludes.
II. Prior Literature
The science of how temperature affects human beings is straightforward.
Heat generated while working must be dissipated to maintain body tem-
peratures and avoid heat stress. If body temperatures cannot be main-
tained at a given activity level, it becomes necessary to reduce the intensity
of work (ISO 1989; Kjellstrom, Holmer, and Lemke 2009). The efficiency
of this process depends primarily on ambient temperature but is also influ-
enced by humidity and wind speed (ISO 1989; Parsons 1993). Laboratory
studies often use an adjusted measure of heat that accounts for these fac-
tors—the wet bulb temperature (WBT; Lemke and Kjellstrom 2012). Un-
fortunately, outside the lab, data on humidity are often unavailable. For
this reason, and to enable comparisons with prior work, we use daily max-
imum temperatures as our measure of heat throughout this paper.3

There have been a number of studies in the physiology and engineer-
ing literature that find that high temperatures reduce labor productivity.
Mackworth (1946) conducted an early artifactual field experiment with
wireless telegraph operators and found that they made more mistakes at
high temperatures. Parsons (1993) and Seppanen, Fisk, and Faulkner (2003)
3 Section A1.3 in the appendix provides estimates using WBT for our factory sites.
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summarize important findings in this area.Hsiang (2010) presents ameta
analysis of recent laboratory evidence that shows that once WBTs rise
above 257C, task efficiency appears to fall by approximately 1%–2% per
degree. AWBT of 257C at 65% relative humidity is roughly equivalent to
a temperature of 317C in dry conditions.4 These temperatures are not con-
sideredunsafe from thepoint of viewof occupational safety and commonly
occur in many countries.5

Controlled experiments in the laboratory or workplace provide a useful
benchmark but do not fully capture real manufacturing environments.
Workers and management generally operate well within physical limits
and have room to increase effort in response to incentives. The output-
temperature relationship therefore depends on the physical as well as be-
havioral aspects of employment, such as the wage contract, particularities
of production, management techniques, and mechanization. This makes
data fromnonexperimental settings particularly valuable. As early as 1915,
Huntington exploited daily variations in temperatures experienced by
workers and students performing various tasks and found that high tem-
peratures appeared to reduce output (Huntington 1915).6 More recently,
Adhvaryu, Kala, and Nyshadham (2020) exploit variation in workplace
temperatures induced by low-heat LED lighting and conclude that worker
productivity increases when temperatures are reduced.
Workplace productivity aside, high temperatures may also reduce our

willingness and ability to even be present at work. Much less prior evi-
dence exists on absenteeism, although Zivin and Neidell (2014) find that
people in the United States allocate less time to work in exposed indus-
tries when temperatures are very high.
III. Data Sources
Our labor and output data are at three levels of aggregation: theworker or
worker team, the plant, and the district. For each data set, we match out-
put to measures of temperature. We also conduct a survey of diamond
firms to study the selective use of climate control. Official data in India
are typically available for financial years, which run from April 1 through
March 31. When referring to a financial year, we use the initial calendar
year. Our data sets are described below and summarized in table 1.
4 The WBT scale is compressed relative to temperature, so a 17C change in WBT corre-
sponds to a higher than 17C change in temperature

5 Temperature exposure in sectors such as mining can be high enough to create serious
health hazards. These settings have long been used for research on heat stress and occu-
pational safety (Wyndham 1969).

6 We are grateful to an anonymous reviewer for pointing us to some of this literature.
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A. Worker Data
We collected worker output and attendance data from selected firms in
three industries: cloth weaving, garment sewing, and the production of
large infrastructural steel products. Figure A.1 (figs. A.1–A.8 are available
online) includes photographs of production lines in each of these indus-
tries. Our three cloth-weaving factories are all located in the industrial city
of Surat in the state ofGujarat, in western India.Our garment factories are
managed by a single firm, with six plants located in the National Capital
Region (NCR) in North India and two others in the cities of Hyderabad
and Chhindwara in south and central India. Our steel-production data
are from the rail and structural mill of a large public-sector steel plant
in the town of Bhilai in central India. Each of these sites is part of an im-
portant manufacturing sector in the Indian and global economies. The
textile sector (which includes spinning, weaving, and dyeing) employs
about 12% of factory workers in India. The garment sector employs about
7% of factory workers, and the Bhilai steel mill is the largest producer of
steel rails in the world.7

For the three cloth-weaving factories, we gathered daily data on meters
of cloth woven and attendance of 147 workers employed during the finan-
cial year starting April 2012. A worker in each of these factories operates
about sixmechanized looms producing woven cloth.Workers are engaged
in monitoring looms, adjusting alignment, restarting feeds when inter-
rupted, and making other necessary corrections. The cloth produced is
sold inwholesalemarkets or todyeing andprinting firms.Workers are paid
based on the meters of cloth woven by these looms, and no payments are
made for days absent. Protection fromheat is limited to the use of windows
and some fans. We obtained payment slips for each day and digitized these
to generate a worker-level data set of daily output and attendance. For
most types of cloth, workers were paid Rs 2 per meter.
For garment sewing, wehave production data fromeight factories owned

by a single firmproducing garments for foreign apparel brands. Unlike in
the cloth-weaving firms described above, these workers are paid monthly
wages that do not directly penalize workers for small variations in produc-
tivity or occasional absences. In each plant, production is organized in
sewing lines of 10–20 workers, with each line creating part or all of a cloth-
ing item. Lines are usually stable in their composition of workers, while
the garment manufactured by a given line changes based on production
orders. Our productivity measure relates to the entire sewing line. The
garment sector is highly competitive, and firms track worker output in
sophisticated ways. In our case, the firm used an hourly production target
7 For employment shares, see ASI 2009–10, volume 1. A description of the steel plant at
Bhilai is available from the Steel Authority of India. The steel rails from Bhilai are used for
the entire network of public railroads in the country.



1804 journal of political economy
for each line, based on the time taken to complete the desired garment by
an experienced line of “master craftsmen.” The actual hourly output,
when controlled for the target, provides ameasure of the lineproductivity.
The target is not revised each day so it is not sensitive to daily temper-
atures. The firm management provided us with daily production from
103 sewing lines over a period of 730 days during the calendar years
2012 and2013.They also gaveus attendance recordsover the sameperiod,
allowing us to construct a daily count of absences within sewing lines in
their factories.8

These garment factories also provide us an opportunity to study the ef-
fects of climate-control investments onproductivity. During the period for
which we have data, the firmwas in the process of installing cooling equip-
ment on its shopfloors. This installation of climate control had been com-
pleted in five of the manufacturing units in the NCR before 2012, but the
sixth unit did not get this until 2014. Of the 103 sewing lines, 84 lines were
located in the NCR, of which 74 had climate control. Two factories in Hy-
derabad andChhindwara (19 sewing lines) were also without climate con-
trol, but average temperatures in these areas are lower than in the NCR.
This phased rollout allows us to compare temperature effects in colocated
factories with and without climate control.
The rail and structuralmill in Bhilai is the primary supplier of rails to the

Indian Railways and produces steel products used for large infrastructural
projects. Rectangular blocks of steel called “blooms” form the basic input
for all these products. They enter a furnace and are then shaped into rails,
or “structurals,” to meet ordered specifications.9 When a bloom is success-
fully shaped, it is said to have been “rolled.” The number of blooms rolled
in an 8-hour shift is our measure of output.
There are three shifts on most days, starting at 6 a.m., and workers are

assigned to one of three teams that rotate across these shifts. The median
number of workers on the factory floor is 66. Our production data record
the team and the number of blooms rolled for each working shift during
the 1999–2008 period.Weobserve a total of 9,172 shifts over 3,337 working
days. In addition to the team output in each shift, we also have team-level
absences over a shorter period of 857 working days between February 2000
and March 2003.10
8 Not all sewing lines are operational for all days during these 2 years. The number of ob-
servations over the time span of 730 days, therefore, varies by sewing line. Our attendance
data cover more workers than our output data, e.g., employees engaged in cloth cutting
but not sewing activities in the same factories. Since output data do not identify individual
workers and lines are labeled differently in the two data sets, we separately analyze produc-
tivity and absenteeism and do not investigate interactions.

9 “Structurals” refer to a miscellaneous set of steel products used mostly in construction
projects such as roads and bridges.

10 These data were first used by Das et al. (2013), who provide a detailed account of the
production process in the mill.
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Unlike the weaving and garment units, the production of rails is highly
mechanized, and the mill runs continuously with breaks only for repair,
maintenance, and adjustment for different products. Workers who ma-
nipulate the machinery used to shape rails sit in air-conditioned cabins.
Others perform operations on the factory floor. This is the most capital
intensive of our case-study sites with both automation and climate control.
B. Panel of Manufacturing Plants
We purchased secondary data from the Annual Survey of Industries (ASI)
covering the financial years 1998–99 to 2012–13. The ASI is a Government
of India census of large plants and a random sample of about one-fifth of
smaller plants registered under the Indian Factories Act. Large plants are
defined as those employing more than 100 workers.11 The ASI provides
annual data onoutput, the value of fixed assets, debt, cash onhand, inven-
tories, input expenditures, and the employment of workers and manage-
ment. The format is similar to census data on manufacturing in many
other countries.12

The ASI provides plant identifiers for the 2000–2010 period but not in
other years. To create a longer panel requiresmatching observations across
different years using time-invariant plant characteristics. Following a pro-
cedure similar to that of Allcott, Collard-Wexler, and O’Connell (2016),
we create an unbalanced panel of 58,377 plants from 1998 to 2012.13 We
match plants to temperature and rainfall at the level of the district.14
C. District Panel of Manufacturing GDP
The Planning Commission of India has published data on district-level
manufacturing-sector GDP over a 12-year period from1998 to 2009. These
figures include ASI plants as well as estimates from unregistered manufac-
turing and smaller factories not covered by the ASI. We use these statistics
to directly estimate the effect of temperature on economic output, aggre-
gated at the level of districts. Unfortunately, after 2009, this information
has not been systematically compiled. Data for some districts were either
not available in this data set or not reliable because of changes in bound-
aries over this period. Kumar and Somanathan (2009) provide a review of
these boundary modifications. Therefore, our estimates are based on a
11 For regions with very little manufacturing, the ASI covers all plants, irrespective of
their size.

12 Berman, Somanathan, and Tan (2005) discuss the measurement of variables in the
ASI and its comparability with manufacturing data in other countries.

13 Appendix sec. A1.4 provides details on panel construction.
14 There are 529 districts with at least one plant in the data set. Figure A.4 shows the geo-

graphic distribution of ASI plants and locations of our microdata sites.
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subsample of 438 districts with static boundaries and at least two nonmiss-
ing observations over this period.
D. Weather Data
Our weather data come from two sources. We use recordings from public
weather stations within the cities where our cloth-weaving and garment-
sewing factories are located. We also use a 17 � 17 gridded data product
sold by the IndiaMeteorological Department (IMD), which provides daily
historical temperature and rainfall measurements interpolated over the
IMD’s network ofmonitoring stations across the country. Thefirst of these
provides amore precisemeasure for locations near a weather station. The
second is best suited to averaging over larger areas.15

In the case of our worker data, we know the precise factory locations
and can use data from nearby public weather stations wherever available.
We characterize the temperature of a day using the daily maximum tem-
perature, which occurs during working hours and is therefore a useful
proxy for heat exposure at the workplace. There were no public weather
stations in theproximity of theBhilai Steel Plant over the period for which
we have data. For this plant, we instead rely on the IMD gridded data set
and use an inverse distance weighted average of grid points within 50 km
of the plant to assign daily maximum temperature values.
For our annual panel of manufacturing plants, we use daily maximum

temperatures from the IMDgridded data sets as well as daily precipitation.
Since we do not have precise location coordinates from the ASI, we assign
to each plant the temperature and rainfall corresponding to the district in
which it is situated. These numbers are obtained by spatially averaging grid
temperatures over the geographical boundaries of each district. Additional
details are in appendix section A1.4 (appendix is available online).
When using the ASI data, in our main specification, we aggregate daily

temperatures up to the annual level using counts of the number of days in
the year falling within different temperature bins. We use temperature
bins defined as {(0,20], (20,25], (25,30], (30,35], (35,50]}. To summarize
the temperature distribution over the year, we construct a vector T 5
ðT 1, T 2, T 3, T 4, T 5Þ, with counts of the number of days in each of these
bins. This is calculated for every district and each year. Taken together,
these bins are nonoverlapping and span the observed range of tempera-
tures in the data, so that any given day is assigned to exactly one bin. We
also estimate additional specifications using alternative functions of daily
15 The physiology literature often uses WBTs to study heat stress. This measure combines
temperature and humidity. We are not aware of a good source of time-varying measures of
WBT for the whole country. For this reason, and to ease comparison with previous work, we
use maximum temperatures throughout the main paper.
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maximum temperatures over the year, including a degree-day measure.
These are described in section IV.B.
When using worker-level data, we also use similar binned specifications.

The cutoffs and widths of these bins vary, reflecting differences in the dis-
tribution of weather in different sites. Bin definitions for workers are dis-
cussed in section IV.A and shown in figure 1.
E. Climate Control within Diamond Firms
In August 2014, we surveyed 150 diamond-cutting plants, randomly sam-
pled frommore than 500 units formally registered with the industry associ-
ation of the city of Surat (the same location as our cloth-weaving units).
Eachplant carries out five operations: (i) sorting and grading, (ii) planning
andmarking, (iii) bruting (rounding a diamond), (iv) cutting, and (v) pol-
ishing. Although these factories are small and labor intensive like the cloth-
weaving plants, the value added in production is much greater, and these
units commonly deploy air-conditioning in at least some parts of the plant.
We asked the management of each firm about the number of workers

andmachines and the use of air-conditioning in each of thefive operations.
They were also asked to rate, on a scale of 1–5, the importance of each of
these processes to the quality of final output. We use these responses to
study the selective deployment of climate control.
IV. Results

A. Temperature Effects on Worker Output
Temperature can influence worker output through different channels.
People may be more likely to miss work on very hot days. They may also
be less productive at theworkplace because of heat stress. Both contempo-
raneous and lagged temperatures potentially matter.
We begin by estimating the effects of temperature on the output of

workers at the weekly level. These estimates reflect the combined effects
of absenteeism and reduced productivity at work. We then use daily data
to separately examine the nonlinear effects of contemporaneous and
lagged temperatures on productivity and attendance.
Output is related to temperature using the following binned specification:

yiw 5 ai 1 gM 1 gt 1o
J

j52

bjT
j
iw 1 vRiw 1 lXiw 1 eiw: (1)

Our output measure is in physical units in each of the three types of
firms that we study. For cloth weaving, yiw is the inverse hyperbolic sine
transformation of the dailymeters of cloth produced byworker i averaged
over the course of week w. If a worker is absent, we set output for that day
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at zero. We use this transformation instead of logarithms since our out-
put indicator can take zero values. For the steel mill, yiw is the logarithm of
the average number of rectangular blooms rolled in shift i during week w.
As described in section III, a bloom is an intermediate steel product that
FIG. 1.—Effect of temperature on worker output. Estimates are percentage changes in
daily output (averaged over a week) for a day in the week moving to a hotter temperature
bin from the coolest (omitted) bin. Shaded areas represent 90% confidence intervals using
robust standarderrors clusteredat theworker level.Thenumberofbins variesacross locations,
reflecting differences in observed temperatures.A, Garment sewing lines in theNational Cap-
ital Region (NCR). B, Garment sewing lines inHyderabad and Chhindwara. C, Cloth weaving
in Surat.D, Steel mill in Bhilai. The output variable for garment plants (A, B) is defined as the
logarithm of the efficiency measure of each sewing line. In panel C, the output variable is
definedas the inverse hyperbolic sine transformationof themeters of clothwovenby aworker.
In panel D, the output variable is the logarithm of blooms rolled by a team of workers.
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is used in the manufacture of railway tracks. There are three shifts in the
workday, each manned by a different worker team. For garment plants, yiw
is the logarithmof the efficiency of each sewing line (a teamofworkers). “Ef-
ficiency” is a performance metric used by the garment firm based on the
number of operations completed everyhour by the sewing line.We also con-
trol for a line-specific target efficiency that is set by the firm, as described in
section III.We do this because the lines carry out operations of varying com-
plexity over time, and the target helps to control for this.Note that the target
itself is not updated daily and is therefore independent of temperature.
We include a range of fixed effects to control for idiosyncratic worker pro-

ductivity and temporal and seasonal shocks. Fixed effects for the ith unit are
denotedbyai. A unit is an individual worker in the cloth-weavingfirms, a sew-
ing line in garment firms, and a team shift for the steelmill. Asmentioned in
section III, for the steel mill, there are three shifts a day, and three teams of
workers rotating across shifts, producing a total of nine indicator variables.
Output is likely to respond to (possibly seasonal) demand, so we also in-

clude month and year fixed effects (gM, gt). We use Riw to indicate the
weekly average of daily rainfall and Xiw other controls including the num-
ber of working days in the week and, for garment workers, the target effi-
ciency. The variable T j is a count of the number of days in the reference
week that fall in a given temperature bin j. We use the following temper-
ature bins: (0,19], (19,21], (21,23], (23,25], (25,27], (27,29], (29,31], (31,33],
(33,35], (35,50]. Taken together, these capture the nonlinear relationship
between output and temperature.
The temperature range we observe for each unit depends on its loca-

tion. For units in the NCR around Delhi, we use all 10 temperature bins.
For each of the other factory locations, we combine some of the lower
temperature bins because observed temperatures span a smaller range.
To facilitate comparisons, the highest bin is pegged at maximum temper-
atures above357C.Thecloth-weavingworkers inSurat facewarmer temper-
atures, so our first bin ends at 297C. This produces five bins: (0,29], (29,31],
(31,33], (33,35], and (35,50]. For the steel plant and the garment-sewing
lines outside the NCR, our first bin ends at 277C. Because the sum of all
bin counts is a constant, we omit the lowest bin in our regressions. The es-
timate of the coefficient of T j should be interpreted as the effect of a sin-
gle day in the weekmoving from the lowest (coldest) temperature bin,T 1,
to a warmer temperature range corresponding to bin j.
Figure 1 presents coefficient estimates bj for all worker sites, with 90%

confidence intervals. In the absence of climate control, output falls in
weeks with more hot days.16 In climate-controlled garment plants in the
16 Large shop floors are not cooled by typical air-conditioning units. Thus, when we refer
to climate control, wemean aplant that has a centralized cooling system such as an air washer
installed.
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NCR (fig. 1A), we see no negative effects of temperature on output. For
the steel mill, which is largely automated and has climate control, if any-
thing, output rises slightly at higher temperatures (fig. 1D). Thismight oc-
cur if climate control is turned on only on hot days, making workplace
conditions on those days actuallymore comfortable. It is also possible that
foundry operations are negatively affected by cold weather because metal
may set too quickly, causing faults in the final output (Fiorese et al. 2015).
We return to the question of interactions of capital equipment with tem-
perature in section IV.B.17

Our estimates are heterogeneous across workplace settings. For gar-
ment plants in theNCRwithout climate control, the effect of an additional
day in a week moving from the lowest to highest temperature bin is to re-
duce average daily efficiency by as much as 8%. The estimate for the gar-
ment plants in Hyderabad and Chhindwara is about half of this. For weav-
ing workers, it is as low as 2%. These differences are not surprising because
the omitted bin is not the same across sites—in warmer regions, the omit-
ted bin spans higher temperatures than for sites in the NCR. That said,
workplaces vary along many other dimensions such as worker health and
income, the nature of physical or cognitive tasks they perform, differences
in the outputmeasure, financial incentives, and the nature of employment
contracts. These factors may lead to heterogeneous effects of heat, even if
the observed temperature ranges are the same.
For worker sites, we are also able to obtain data on temperature and hu-

midity and can estimate WBTs that are commonly used in the physiology
literature to measure heat stress. In figure A.3 (figs. A.1–A.8 are in the ap-
pendix) we replicate the results in figure 1 using bins in WBT instead of
maximum temperatures. We find the same patterns of output response
as we dowhenusingmaximumtemperatures to proxy forheat. If anything,
standard errors are smaller and effect sizes slightly larger.
Lagged effects on output and absenteeism.—To examine the effect of con-

temporaneous and lagged temperatures on workplace productivity and
absenteeism, we turn to our disaggregated daily data. Exposure to very
hot days may generate fatigue and illness, lowering output and increasing
absenteeism. Strokes, fatigue, and even cases of organ damage have been
directly linked toheat stress, and continued exposuremay increase overall
vulnerability (Kovats and Hajat 2008). Other illnesses may be influenced
by sustained warm weather through different mechanisms, for example,
the increased breeding of pathogens and disease vectors.
17 High temperatures could directly reduce productivity if they are associated with power
outages. All the factories in our data set have a power backup, so this is not a concern. Also, if
outages were driving our results, we should expect to see this effect in plants with andwithout
climate control.
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Wemodify (1) to include lagged temperature bins. Here, Lj
id is a count

of the number of days falling in bin j in the six days preceding day d. Our
output and other variables are as before, except now at the daily rather
than weekly level. In the case of weaving workers, we include only those
present at work on day d. We estimate

yid 5 ai 1 gM 1 gt 1o
j

bjT
j
id 1o

j

qjL
j
id 1 vRid 1 lXid 1 eid : (2)

We now use T j as an indicator for the day falling in temperature bin j; Rid

is daily rainfall; and Xid now includes a fixed effect for the day of the
week, and as before, for sewing lines, it also includes the target efficiency
for the line. Our estimates from weekly data in figure 1 suggest that most
of the temperature effects occur in the twohighest bins.We focus on these
temperatures by aggregating over cooler bins. Therefore, there are a total
of three bins in both T and L.18

Our results are in table 2. Declines in daily output on hotter days are
seen only in sites without climate control.19 Lagged temperatures reduce
output for some sites. The clearest effects are found for weaving workers,
where an additional day above 357C in the six preceding days causes a
2.7% decrease in contemporaneous daily output. Notice that lagged tem-
peratures seem to matter even in climate-controlled garment plants. This
may reflect exposure outside the workplace. This is related to our findings
on absenteeism, which we turn to next.
We have a daily indicator of absenteeism for our cloth-weaving workers.

In the case of garment and steel plants, we have daily counts of the num-
ber of absences in the worker team. Using these measures of absenteeism
as the dependent variable, we estimate (2). From table 3, we see absen-
teeism effects in settings with and without climate control. Lagged high
temperatures increase the likelihood ofmissedwork in climate-controlled
garment factories, the steel plant, and the weaving plants. For garment
plants with no climate control, our coefficients are imprecisely estimated.
The garment workers in our sample provide us with some insight into

how workers respond to incentives. These workers are allocated a certain
amount of paid leave, and our data distinguish paid and unpaid absences
for each worker. In climate-controlled garment plants in the NCR (cols. 1
and 2), we find that the number of paid absences increases with both con-
temporaneous and lagged temperatures but that the probability of un-
paid leave does not change with temperature. This suggests thatmonetary
18 Including lagged variables for all temperature bins increases the number of coeffi-
cients being estimated and reduces the precision of our estimates.

19 As before, we see positive effects on output in the case of climate-controlled sites. Stan-
dard errors are high for the garment plants in central and south India, and we are unable
to draw clear conclusions.
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disincentives could weaken the temperature-absenteeism link.20 For non-
climate-controlled garment plants (cols. 5 and 6), our point estimates are
too noisy to draw any conclusions.
Absenteeism driven by contemporaneous high temperatures may be

partially due to time-allocation decisions and labor-leisure trade-offs (Zivin
andNeidell 2014). Lagged effects may also reflect the effects of morbidity.
Althoughworkplace climate controlmay reduce the effects of temperature
on worker productivity on the shop floor, it may not remove negative out-
put effects caused by absenteeism. Absenteeism might also result in costs
we do not measure, such as firms hiring redundant workers. The presence
TABLE 2
Effect of Hot Days on Worker Output

Climate Control

No Climate Control

Garments (Log
Efficiency)

Steel (Log
Blooms Rolled)

Weaving (IHS
Meters)

Garments (Log
Efficiency)

(1) (2) (3) (4) (5)

T (337–357C) .025** .028* 2.040** 2.129*** 2.007
(.010) (.017) (.019) (.042) (.037)

T (above 357C) .035*** .020** .011 2.154*** .008
(.014) (.009) (.022) (.041) (.046)

L (337–357C) 2.004 .005 2.033*** 2.009 .004
(.005) (.004) (.011) (.012) (.010)

L (above 357C) 2.011** 2.002 2.027*** 2.019 .015
(.005) (.005) (.009) (.027) (.018)

Climate control Yes Yes No No No
Number of units 74 lines 9 teams 147 workers 10 lines 19 lines
Time span (days) 730 3,337 365 730 730
20 We focus her
tracts may affect o
in the appendix p
without paid leave
out by interviews w
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e on daily absenteeism. The incenti
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are muchmore likely to leave during
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of redundant laborhas been documented for the steel plant we study (Parry
1999), and this might explain why we do not see output effects in climate-
controlled plants in spite of increased absenteeism.
For the garment and steel plants, there is no straightforward way to

translate increased absenteeism within worker teams into impacts on out-
put. For weaving workers, an additional day above 357C in the six preced-
ing days causes a 0.005 increase in the probability of missing work. The
mean worker output, on a day when the worker is present, is 134.3 meters
of cloth. Since absenteeism takes output to zero, this is equivalent to a re-
duction of 0.7 meters. Weaving workers come to work intermittently, so
their average daily output, net of absences, is about 51 meters of cloth
per day. An additional hot day in the six precedingdays, therefore, reduces
output by about 1.4% through the absenteeism channel. This can be com-
pared with a loss of 2.7% via the on-the-job productivity channel (table 2).
B. Temperature Effects on Plant Output

1. Main Results
Thus far, wehaveusedhigh-frequencydata to show that worker productivity
declines onhot days.Wenow turn toournationwidepanel ofmanufacturing
TABLE 3
Effect of Hot Days on Worker Absenteeism

Climate Control No Climate Control

Garments
Steel
(All)

Weaving
(All)

Garments

Paid Unpaid Paid Unpaid
(1) (2) (3) (4) (5) (6)

T (337–357C) .082*** 2.083 2.011 .003 2.001 .796
(.022) (.065) (.048) (.004) (.128) (.678)

T (above 357C) .115*** .031 .051 2.004 2.034 1.001
(.027) (.049) (.068) (.004) (.117) (.862)

L (337–357C) 2.018 2.047 .044*** .006*** .017 .772
(.011) (.032) (.014) (.002) (.077) (.686)

L (above 357C) .021** 2.001 .045** .005*** .078 .567
(.010) (.022) (.020) (.002) (.083) (.426)

Number of units 224 lines 9 teams 147 workers 42 lines
Time span (days) 730 3,337 365 730
Note.—Robust standard errors are clustered at the worker level.T is an indicator for a day
falling in the specified temperature bin.L is a count of the number of days falling in the spec-
ified temperature bins in the six preceding days. Models include unit-level fixed effects (in-
dividuals for weaving and teams for garments and steel) andfixed effects for themonth, year,
and day of the week. Columns 1 and 2 present estimates of the effect of temperature on the
number of paid and unpaid leaves for sewing lines in climate-controlled garment plants, col. 3
reports coefficients for absences in climate-controlled steelworker teams, col. 4 reports the
probability of a weaving worker being absent, and cols. 5 and 6 give estimates of temperature
effects on paid and unpaid leaves for sewing lines in non-climate-controlled garment plants.
** p < .05.
*** p < .10.
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plants to examine whether there are similar temperature effects on the
value of plant output and, if so, whether they might be attributable to
a decline in the productivity of labor.
We estimate a model analogous to (1):

yit 5 ai 1 gt 1o
5

j52

bjT
j
it 1 vRit 1 eit : (3)

The dependent variable y is now the log of the value of annual plant out-
put. Plant and year fixed effects are denoted by ai and gt, respectively. For
every plant i and year t,T j

it is thenumberof days in the year withmaximum
temperature falling in bin j. We have five temperature bins: {(0,20],
(20,25], (25,30], (30,35], (35,50]}. VariableRit is the annual average of daily
rainfall in the district containing plant i in year t.21 We use wider bins here
than with our worker data to preserve precision. We have a shorter panel
with only 15 years of data, as opposed to the worker data, where our short-
est weekly panel is 52 weeks and our shortest daily panel covers 365 days.
The topmost bin for both worker and plant models is identical.
Our coefficient estimates bj are plotted in figure 2 and indicate an in-

verse relationship between temperature and annual plant output, akin
to the relationship we see between temperature andworker productivity.22

Each bj is the percentage change in annual plant output from a single day
in the year moving from the coldest bin to bin j. Shaded areas represent
90% confidence intervals, with standard errors corrected for serial and
spatial correlation following Conley (2010).23 A day moving from the low-
est to the highest temperature bin reduces annual output by 0.22%.
2. Alternative Specifications and Warming Scenarios
We examine the robustness of these results by running a set of related
specifications. In each case, we predict the percentage change in the value
of annual plant output for alternative warming scenarios. Our results are
in table 4. The first four rows of columns 1–4 show the predicted percent-
age change in output when a single day in the yearmoves from207C to the
specified temperature. The first column has the estimates of equation (3)
already in figure 2. Column 2 adds state-specific quadratic time trends.
Column 3 controls for floods and industrial conflicts, while column 4
controls for power outages. We discuss these three variables further in
21 Since temperature and rainfall data are available at the district level but not for indi-
vidual plants, these variables have the same values for all plants in a district.

22 Two recent studies from China have similar findings (Zhang et al. 2018; Chen and
Yang 2019).

23 Conley errors are presented assuming a 150-km radius of spatial correlation.
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sectionVII. We see from table 4 that the additional controls in columns 2–
4 do not substantially change the bin coefficients.
Columns 5–7 present models that do not use daily bin counts but de-

pend on the distribution of daily temperature over the year in other ways.
Column 5 presents a model that is piece-wise linear in degree days. The
calculation of degree days is best explained with an example. A day with
a temperature of 297C contributes 207C to the first bin (0–20], 57C to
the second bin (20–25], and 47C to the third bin (25–30]. Thus, when a
single day moves from 207C to 257C (the scenario in col. 5, row 1, of ta-
ble 4) there is an increase of 57C in the second degree-day bin and no
change in other bins.
More formally, denote the endpoints of our five temperature bins by

(T 1j, T 2j], j 5 1, 2 . . . 5. A daily temperature T contributes positive degree
days to all those bins for which T > T 1j and zero to all others. If T ≥ T 2j ,
the day contributes T 2j 2 T 1j to bin j. If T 1j < T ≤ T 2j , it contributes
T 2 T 1j to bin j. As in (3), we now sum the degree days in each bin over
the year to obtain D

j
it for each unit i and estimate the following model:

yit 5 ai 1 gt 1o
5

j52

bjD
j
it 1 vRit 1 eit : (4)

The effects of moving a day from 207C to 257C, 307C, 357C, and 457C in
the degree-day model are shown in the first four rows of column 5. These
predictions are similar to those from the binned specifications in the first
four columns. Columns 6 and 7 provide results frommodels where logged
output depends on polynomial functions of daily maximum temperature,
summed over the year. Denoting by Tdit the maximum temperature for
FIG. 2.—Temperature effects on the value of annual plant output. Shown is the percentage
change in the annual value of plant output resulting from the daily maximum temperature of
a single day moving from below 207C to the given temperature. Shaded areas represent 90%
confidence intervals with standard errors corrected for serial and spatial correlation following
Conley (2010). Data are from the Annual Survey of Industries for the years 1998–2012.
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plant i on day d of year t, column 6 has predictions based on the following
model:

yit 5 ai 1 gt 1 o
365

d51

b1Tdit 1 o
365

d51

b2T
2
dit 1 vRit 1 eit : (5)

Column 7 is based on a variant without the quadratic temperature
terms, so output depends linearly on the sum of maximum daily temper-
atures over the year. The quadratic and linear models show smaller point
estimates than the binned and degree-day specifications of columns 1–5,
although the confidence intervals are overlapping.
The fifth and sixth rows of the table use our models to generate predic-

tions from two alternative warming scenarios. We use the estimated coef-
ficients fromeach of ourmodels to compute the change in log output that
would occur if the distribution of temperature changed from the one we
actually observe in our data to a new warmer distribution. Row 5 shows
predicted output changes when each day in the year is 17Cwarmer, so that
the annual average of the daily maximum temperature increases by 17C.
The estimated reduction in output ranges from 1.6% to 2.3% in the dif-
ferent models. Row 6 computes predicted output changes based on pro-
jections of long-term warming obtained from the RCP (Representative
Concentration Pathway) 8.5 scenario of the HadGEM2 (Hadley Centre
Global Environment Model version 2) climate model. For every day in
the year, we compute the daily average of the 2075–80 projections and
the 2005–10 projections. The difference between these two give us an es-
timate of the change in temperature we can expect by 2075–80 for each
day of the year.We add this change in temperature to the baseline temper-
ature distribution of average daily temperatures in our data.24 Row 6 pro-
vides predictions for output changes under this warming scenario. These
range between –4.5% and –8.9%.
To summarize, the inverse relationship between measures of tempera-

ture and plant output is seen across themanymodel specifications we con-
sider. Results from these alternative models are broadly comparable, with
some heterogeneity in effect sizes.25
3. The Labor Channel
We now examine the extent to which the aggregate effects we have found
in the factory panel can be explained by reductions in the productivity
of labor as opposed to other factors. There was very limited deployment
of climate control in the Indian factory sector during the period of our
analysis. A study carried out by the Japan Refrigeration and Conditioning
24 This baseline distribution averages over all plants in a year and all years in the data set
so we work with a single temperature number for each day of the year.

25 Table A.3 is similar to table 4 but with different bin cutoffs.
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Industry Association reports that the demand for commercial scale air-
conditioning units in India in 2013 was about 10% that of China and
3% that of theUnited States.26 This, together with our results on declining
labor productivity of workers in our microdata, suggests heat stress on la-
bormay be an important explanation for the declines in the value of plant
output we have presented above.
We explore this using a Cobb-Douglas production function in which

the total factor productivity and the output elasticities of labor and cap-
ital are all allowed to depend on the temperature distribution as repre-
sented by the number of days in each of five temperature bins, T 5
ðT 1, T 2, ::: , T 5Þ. We assume that quantities of labor and capital within
the factory are determined before the realization of T and so do not de-
pend on it. While output elasticities equal input cost shares on average,
they will not do so in any given year since temperature distributions are
not predictable. Denoting logged values of output, capital and labor by
y, k, and l, respectively, we have

y 5 aðTÞ 1 qðTÞk 1 bðTÞl : (6)

We assume that total factor productivity a, output elasticity of labor b,
and the output elasticity of capital q are all linear in temperature bins
indexed by j. Thus, we have

aðTÞ 5 ao 1o
5

j52

ajT
j ,
qðTÞ 5 qo 1o
5

j52

qjT
j ,

and

bðTÞ 5 bo 1o
5

j52

bjT
j :

Making these substitutions in (6), we obtain

y 5 ao 1o
5

j52

ajT
j 1 qo � k 1o

5

j52

qjT
jk 1 bo � l 1o

5

j52

bjT
j l : (7)

We use the net value of equipment and machinery at the start of each
year as our measure of capital and the number of full-time workers as
26 The total sales of variable refrigerant flow air-conditioning systems, a common technol-
ogy for larger commercial and industrial applications, numbered about 22,000 units in India
compared to almost 600,000 in China (JRAIA 2019). Another technology used in industrial
cooling, chiller systems, was even less popular, with about 4,000 units sold (USAID and BEE
2014). Low-cost technologies, such as industrial air coolers that usewater rather than a refrig-
erant, were also uncommon. As recently as February 2019, in an interview published in the
leading Indian newspaper, Hindu BusinessLine, the chief executive officer of India’s largest
manufacturer of air coolers characterized this market as “negligible,” saying that “the indus-
trial/commercial coolers segment doesn’t exist in the country at present” (Vora 2019).
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our measure of labor. We add controls for plant and year fixed effects as
well as rainfall to (7) and estimate qj, bj, and aj.
Coefficient estimates from this model are in column 3 of table 5. Col-

umns 1 and 2 show estimates from models that build up to this one by
incrementally introducing labor and capital interactions with tempera-
ture to our base model in equation 3. We see that the temperature-labor
interaction terms in column 3 are all negative and significant, while tem-
perature effects on the output elasticity of capital are positive. Controlling
for temperature interactions with labor and capital, the residual effect of
temperature is also insignificant, as seen in the first four rows. These re-
sults suggest that it is temperature-induced declines in labor productivity
that drive the negative effects of temperature on output.
One concern with estimating production functions of this type is poten-

tial endogeneity of labor (Levinsohn and Petrin 2003; Ackerberg, Caves,
and Frazer 2006). This may not be a significant concern in our setting,
given India’s notoriously inflexible labormarket. In 2017, theWorld Bank
ranked India as low as 130 on its global Ease of Doing Business index, cit-
ing rigid labor laws as a primary reason for the country’s poor performance.
Among several other weaknesses, the report draws attention to India’s In-
dustrial Disputes Act of 1947, which requires that firms with more than
100 employees obtain explicit government approval before dismissing
workers. Since our measure of capital is the value of plant and machinery
at the start of the year, this too is relatively inflexible and cannot be influ-
enced by temperature shocks during the year.
Nevertheless, as a robustness check, we also estimate our production

function using the Levinsohn-Petrin estimator, which allows for endoge-
nous labor (Levinsohn and Petrin 2003). This approach assumes that la-
bor is highly flexible and chosen by the firm in each period, after the re-
alization of any shocks. Section A1.5 of the appendix describes the way in
which we apply this method to our data, and column 4 of table 5 reports
the relevant coefficient estimates. The point estimates for the labor-
temperature interactions are smaller but remain negative and are statisti-
cally indistinguishable from those in column 3.27

Finally, we investigate how temperature effects vary by labor and capital
intensity. We measure labor intensity by the ratio of the total annual wage
bill to total annual output for all plants in our sample. Wemeasure capital
intensity by the ratio of the value of capital to annual output. We classify
plants into quartiles, Qlj and Qkj, based on their mean values of labor and
capital intensity across all years and estimate the following model:

yit 5 ai 1 gt 1 b0T
a
it 1o

4

j52

bl
jT

a
it Q

lj
i 1o

4

j52

bk
j T

a
it Q

kj
i 1 vRit 1 eit : (8)
27 Capital-temperature interactions and residual temperature effects are subsumed in a
nonlinear control function and not separately estimated here. See app. sec. A1.5 for details.



TABLE 5
Temperature Interactions with Factor Inputs

(1) (2) (3) (4) (5)

Ta .02324*
(.01345)

T 2 .00256** .00008 2.00008
(.00097) (.00211) (.00162)

T 3 .00147 2.00205 2.00009
(.00103) (.00229) (.00165)

T 4 .00081 2.00094 2.00028
(.00108) (.00237) (.00170)

T 5 .00003 2.00499* 2.00171
(.00118) (.00259) (.00185)

l .8612*** .91426*** .36520***
(.0957) (.09660) (.05910)

k .20433** .06629
(.05674) (.04114)

l � T 2 2.00098*** 2.00134*** 2.00056**
(.00027) (.00034) (.00022)

l � T 3 2.00067** 2.00104*** 2.00038**
(.00027) (.00027) (.00017)

l � T 4 2.00052* 2.00077*** 2.00030*
(.00027) (.00027) (.00017)

l � T 5 2.00036 2.00075*** 2.00039**
(.00029) (.00029) (.00018)

k � T 2 2.00009 .00028*
(.00015) (.00015)

k � T 3 .00005 .00022*
(.00016) (.00012)

k � T 4 2.00003 .00016
(.00016) (.00011)

k � T 5 .00022 .00024**
(.00018) (.00012)

Ta � Ql2 2.04037***
(.01215)

Ta � Ql3 2.08313***
(.01312)

Ta � Ql4 2.13986***
(.01794)

Ta � Qk2 .04452***
(.01154)

Ta � Qk3 .03544***
(.01224)

Ta � Qk4 .00876***
(.0149)

Observations 179,107 179,107 179,107 176,620 179,107
Note.—Data are from the Annual Survey of Industry. Standard errors are corrected for se-
rial and spatial correlation following Conley (2010). Models include plant and year fixed ef-
fects. Temperature bins are {(0,20], (20,25], (25,30], (30,35], (35,50]}.T j is the number of days
in the jth bin. T1 is the omitted bin. Columns 1 and 2 add interactions with labor and capital to
our base model. Column 3 presents ordinary least squares estimates of the production func-
tion. Column 4 presents the first stage of a Levinsohn-Petrin estimate of the production func-
tion. Capital-temperature interactions and residual temperature effects are subsumed in a non-
linear control function andnot separately reported. Column 5 interacts annual temperatures with
quartiles of labor andcapital intensities.Coefficients on rainfall andquartiledummies areomitted.
* p < .01.
** p < .05.
*** p < .01.
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Column 5 of table 5 reports coefficients bl
j and bk

j from thismodel. The
negative effects of the annual averageof dailymaximum temperature (Ta)
are greatest in plants with high wage-share output ratios. On the other
hand, capital intensity is positively associated with temperature. These
models include plant fixed effects, so these results cannot simply be driven
by plant size.28

Taken together, the evidence in this section not only suggests that tem-
perature negatively affects manufacturing output but also that this re-
sponse operates through labor productivity.
V. Comparison with Macrolevel Estimates
In this section, we show that our estimated temperature effects at worker
and plant levels are consistent with each other and with estimates based
on district-level manufacturing output. We also compare our results with
prior country-level studies. These comparisons suggest that temperature
effects on labor are large enough to account formuch of the country-level
response of manufacturing GDP to temperature.
Prior studies have estimated the effect of a 17C increase in annual tem-

perature on country GDP. To compare our estimates with these, we must
report our worker and plant results in similar terms. This requires speci-
fying how the distribution of daily temperatures across the year changes
when the average annual temperature increases by 17C.There is of course,
no unique way to map changes in temperature distribution to changes in
annual average temperatures. We simply assume that every day in the year
warms by 17C. Under this assumption, the change in plant output for our
primary specification is 22.1%, with a 90% confidence interval of ±1.32.
This is plotted in bar 2 of figure 3 and is from row 5, column 1, of table 4.
Our worker-level estimates in figure 1 exhibit heterogeneity across sites,

depending on the type of work and the degree of protection from heat.
Noting that no single setting is representative of all workers, we estimate
the effect of a 17C uniform increase in the daily temperature distribution
for garment workers in the NCR who are not working in cooled environ-
ments. We use this site because it has a wide temperature range that cor-
responds most closely to that observed in the nationally representative
plant data. The estimated percentage reduction in output is 3 ± 1.35 (bar 1
of fig. 3).29
28 For parsimony, this model interacts only the average daily maximum temperature with
quartile dummies.We obtain similar results using days in the highest temperature bin rather
than average maximum temperature. We could also interact all temperature bins with quar-
tile dummies, but this produces a large number of imprecisely estimated coefficients.

29 Since wemodel the relationship between temperature and worker output using a “days
in temperature bins” specification, we translate a 17C increase in the daily temperature into
corresponding changes in temperature bins in order to compute this effect.
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If the output from manufacturing plants drops in hot years, we should
see corresponding changes inmanufacturingGDP at the subnational level.
Using the district panel described in section III, we regressmanufacturing
GDP on average annual maximum temperature, T a, controlling for rain-
fall as well as district and year fixed effects. The coefficient on T a gives us
the effect of a 17C increase in temperature ondistrict output. The estimated
percentage reduction in manufacturing GDP is 23:5 ± 2:6. This is shown
in bar 3 of figure 3.30

The last two bars of figure 3 depict estimates from two recent country-
level studies:Dell, Jones, andOlken (2012) andBurke,Hsiang, andMiguel
(2015). Both studies use annual average temperatures for many countries
across the world, observed over long periods of time. The specifications in
FIG. 3.—Bars 1–3 provide the marginal effect of temperature on log output at different
levels of production with 90%confidence intervals as estimated in this paper. “DJO” provides
the contemporaneous effect of temperature on industrial sector growth rates in poor coun-
tries in a model with no lags fromDell, Jones, andOlken’s (2012) study. “BHM” provides the
contemporaneousmarginal effect of temperature on all-sector country output growth, at 307C
from a similar model with no lagged effects in Burke, Hsiang, and Miguel’s (2015) study.
30 We favor using this district panel rather than the Reserve Bank of India GDP figures
for Indian states because these data are interpolated in several years and therefore unreli-
able. In our district panel, we have missing data in some years but no imputed estimates.
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these studies are not directly comparable with ours, but their results pro-
vide a useful benchmark. In figure 3, the fourth bar, labeled DJO, provides
the contemporaneous effect of temperature on industrial sector growth
rates in poor countries in a model with no lags (table 5 of Dell, Jones,
andOlken 2012). The last bar, labeled BHM, provides the contemporane-
ous marginal effect of temperature on all-sector country output growth,
at 307C from a similar model with no lagged effects (table S2 of Burke,
Hsiang, and Miguel 2015). It is interesting that temperature effects on
the economy as a whole are similar in magnitude to those observed for
manufacturing alone and, in turn, are similar to our estimates at lower lev-
els of aggregation. Part of the explanation might be that changes in labor
productivity affect all sectors of the economy.
This exercise does not, of course, imply that the negative effects of tem-

perature on GDP found in these cross-country studies is occurring wholly
or mainly through labor. However, both studies use data going back to
the 1950s, covering long periods of timewhen climate control was uncom-
mon inmany parts of the world. Our estimates suggest that if the effect of
temperature on labor productivity in the countries and sectors studied by
these authors is of the same size as what we find in Indianmanufacturing,
then it would be enough to explain the entire temperature effect found
there.
VI. Adaptation
The loss in output caused by high temperatures encourages adaptive re-
sponses by firms. In the short term, decisions to invest in climate control
depend on the costs of cooling, relative to the expected output losses re-
sulting fromheat stress.31Over longer timeperiods, firmsmay increase au-
tomation, relocate plants, or change the composition of output.
Firms may also selectively invest in climate control. If labor productiv-

ity plays an important role in output losses associated with hot days, we
would expect that processes that are labor intensive and add high value
would be preferentially protected. To study this, we conducted a survey
of 150 diamond-cutting factories located in the same city of Surat as our
cloth-weaving units. These are drawn randomly from all factories regis-
tered with the local diamond industry association.
These factories handle several distinct processes, some of which are

largelymechanized (such as cutting stones), while others havemuchgreater
worker input (such as sorting uncut diamonds by quality). Our survey al-
lowed us to study the selective adoption of air-conditioning within plants.
We find that climate control is indeedmore likely to be used for processes
31 In app. sec. A1.14, we carry out a back-of-the-envelope cost-benefit analysis of climate
control for weaving plants and show that electricity costs of air-conditioning are high rel-
ative to output losses.
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that are labor intensive and contribute most to diamond quality. We de-
scribe our data and results in appendix section A1.15.
In our national plant panel, we find that the effects of a 17C rise in

temperature seem to be falling over a 15-year period. Wemodify (3) to in-
clude a full set of interactions of temperature bin counts with a continu-
ous time variable. The negative effect on output from an additional day
in the fourth and fifth temperature bins reduces by about 6%–8%per year.
column 1 of table A.1 (tables A.1–A.5 are available online) provides these
coefficient estimates.32 As countries grow richer, it is possible that their
manufacturing sector becomes less vulnerable to output losses associated
with heat.
VII. Alternative Explanations
Reduced labor productivity is not theonly way inwhichhigh temperatures
may reduceoutput. Climatic changesmay increase conflict (Hsiang, Burke,
and Miguel 2013) or the frequency of natural disasters (Kahn 2005). Nei-
ther of these would influence our worker-level results because they occur
on timescales that are much longer than a day. They could potentially me-
diate the temperature effects on output that we observe in our national
panel of manufacturing plants. Other factors that may influence plant out-
put, without necessarily changing the productivity of labor, include power
outages, input price changes, and agricultural spillovers.
We test some of these explanations and find that they are unable to ac-

count for our results. We have already shown in table 4 that temperature
effects on output remain almost unchanged when controlling for floods,
conflicts, and power outages. In appendix section A1.8, we describe the
constructionof these variables andprovide coefficient estimates associated
with them when they are included in modified versions of (3).
To examine whether input prices change with temperature, we use data

on the price of the input with the largest expenditure share, as reported in
the ASI (table A.2). We find no evidence of temperature effects on input
prices in our data. It may be that most changes in prices are captured by
the year fixed effects in our models, and price shocks from local tempera-
ture fluctuations are neutralized by storage.
Finally, to examine the role of agricultural spillovers, we provide sector-

wise estimates of temperature effects by estimating a model in which we
include interactions of average annual maximum temperature with indi-
cators for two-digit manufacturing sectors. We observe negative tempera-
ture effects across sectors, even for activities withnoobvious connection to
agriculture (fig. A.6).
32 Since climate control requires electricity, we also look for heterogeneity in the temper-
ature response by the electricity intensity of output. We find that plants with above-median
levels of electricity intensity respond more weakly to high temperatures (table A.4, col. 2).
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VIII. Conclusions
This paper estimates the impact of temperature onmanufacturing output.
We use selected factory settings to separately study temperature effects on
the daily productivity and attendance of workers. We show that, in the ab-
sence of climate control, worker productivity declines on hot days. For ab-
senteeism, we find effects of contemporaneous and lagged temperatures
even for workers in factories with climate control, suggesting that work-
place adaptation alone is insufficient to mitigate all the effects of heat.
In a 15-year national panel of manufacturing plants, we find that the effect
of temperature on the value of annual plant output appears to be driven in
large part by its effect on the output elasticity of labor.
Our estimates from both worker and annual plant data are comparable

to those found in studies of country-level manufacturing GDP. This sug-
gests that heat stress, through its effects on productivity, time allocation,
and morbidity, is an important underlying cause for the declines in non-
agricultural GDP at high temperatures.
The evidence we provide on the effectiveness of climate control and on

its limited adoption has implications for how we should think about the
costs of climate change going forward. Research into low-cost technolo-
gies to protect workers from ambient temperatures may have significant
social value. In the long term, there are other ways in which the industrial
sector might respond to high temperatures. These include increasing au-
tomation and shifting away from labor-intensive sectors in hot parts of the
world. These adaptive responsesmay have significant distributional impli-
cations. If directed toward more productive workers, they will tend to in-
crease wage inequality.
Although our focus throughout this paper has been on themanufactur-

ing sector, the potential ramifications of our findings are wider. Our con-
clusion that a physiologicalmechanism is economically important suggests
that these effects may exist in labor-intensive activities across the world,
such as construction and agriculture, where heat exposure is high and
adaptation through climate control is expensive or infeasible. Observed
productivity losses in agriculture that have been attributed by default to
plant growth responses to high temperatures may in fact be partly driven
by lower labor productivity. These possibilities are yet to be researched.
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