

USAID MNRE Partnership to Advance Clean Energy - Deployment 2.0 Technical Assistance Program

Designing a new Renewable Energy Procurement Model for Indian Railway's Traction Loads – An analysis for Haryana

May 01, 2020

Indian Railways is 2nd largest rail network in the world, carries the most passengers in the world, is the 9th largest employer in the world, employing 1.6 million people and not surprisingly is an energy guzzler

Indian Railways **Power Demand** to double by 2022 from 2 GW to 4 GW

Largest Consumer of Electricity in India 8.5 **Billion Units of** electricity used annually 16 Billion for Traction, 2.5 Billion for nontraction

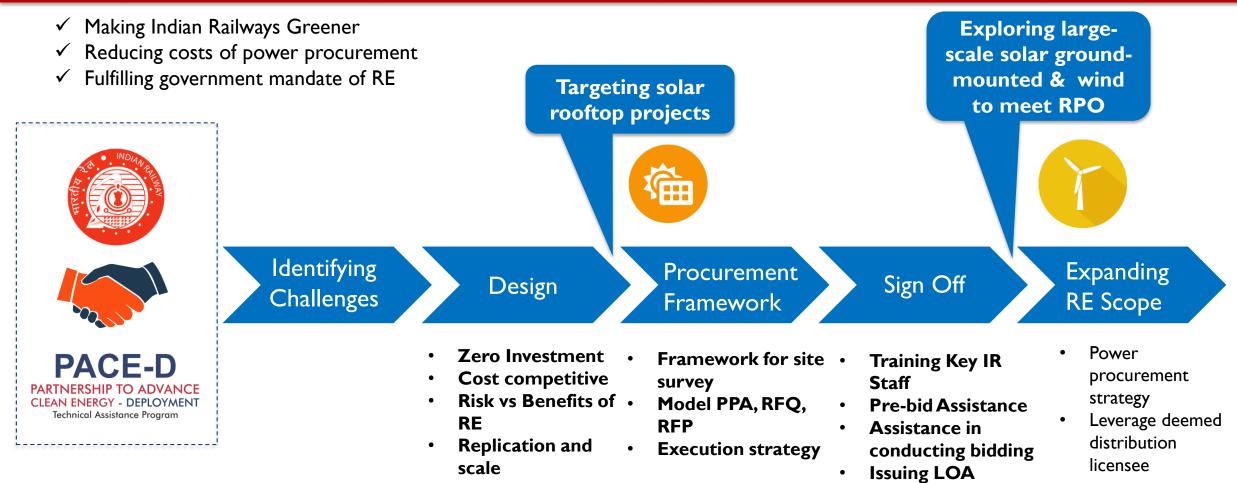
Electrify 100% of all Rail Routes by 2022

Carbon Neutrality by 2030

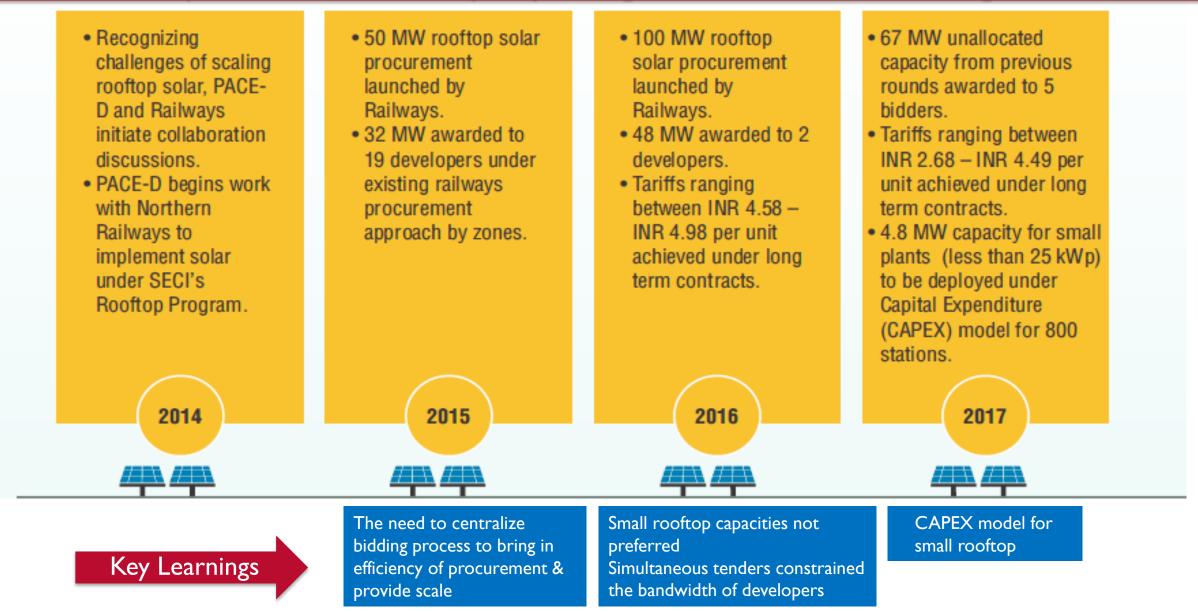
I GW of solar power by 2022

200 MW of Wind by 2022

10% of IR's energy from RE by 2022


Help meet India's NAPCC targets

The Indian Railways is uniquely positioned for the adoption of Renewable Energy and solar due to its diverse energy needs, pan India network and distributed load centres


- Large number of load centers:
 - Traction loads for freight and passenger traffic operations
 - Non-traction loads for railway stations, factories & workshops (7500 stations and counting)
- **Diverse and distributed load profile**: small buildings to large factories to railway stations to varying traction load
- Wide visibility of rooftop projects: railway stations, reservation centers, etc.
- **High electricity expenditure** due to high tariffs (our socialistic genesis) and increasing demand for electricity
- **Go Green:** the ambition to be a green and

USAID PACE-D 2.0 RE's engagement with IR goes back to 2014 when it began working with the Railway Board on the Deployment of Solar Rooftop

PACE-D TA Programs journey with the Indian Railways continued till the beginning of 2018 by which time ~ 250 MW of solar rooftop had been bid and NZEB principles integrated into the New Station Design Plans

USAID PACE-D TA Program's engagement with REMCL started in the 2nd half of 2019 – to identify areas where PACE-D 2.0 RE could help REMCL and IR scale up utilization of RE

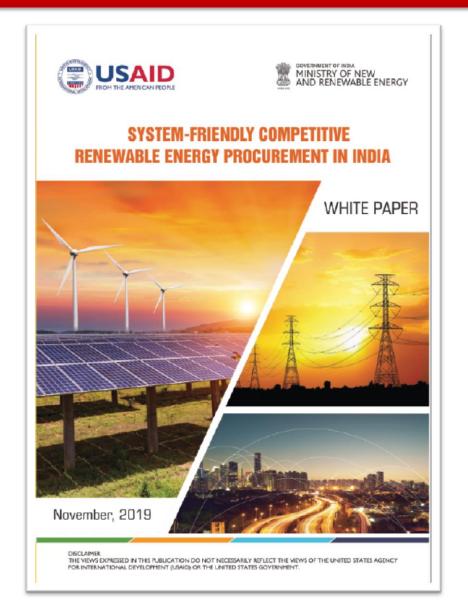
- USAID and REMCL's initial discussions focussed in evaluating 1) system friendly RTC procurement & 2) streamlining solar rooftop deployment.
- REMCL suggested a few areas of cooperation, which PACE-D accepted
- REMCL shared traction load data for two states in January and then for a third in March
- System friendly RTC Procurement demand curve (Haryana & Rajasthan), rudimentary Cost Benefit Analysis undertaken in January, 2020

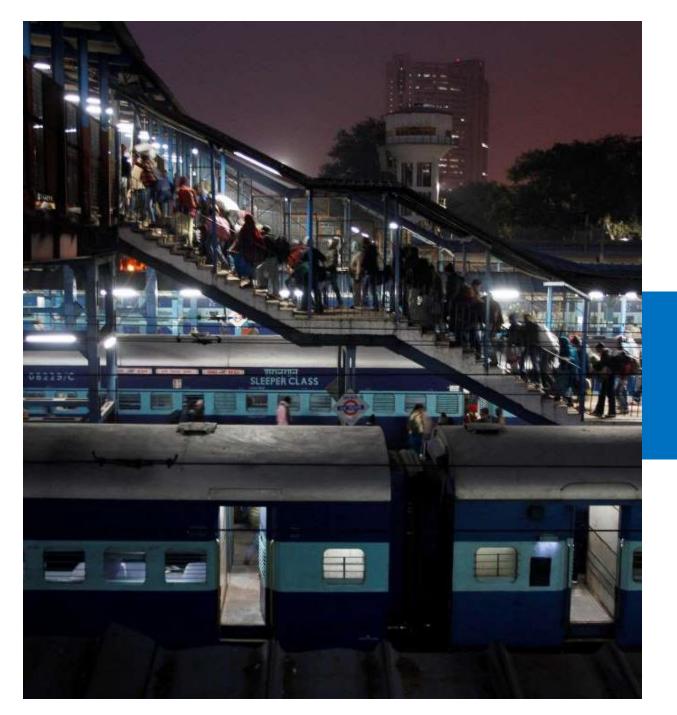
Background to the discussions was the increasing focus on energy independence/ security & the need to reduce energy procurement costs by transitioning to a deemed distribution licensee

- In order to cut costs, IR became a Distribution Licensee
- This required it meet its need for 24*7 Power supply across states to feed varying demand curve(s)
- REMCL, acting on behalf of IR had three objectives:
 - Maximizing & optimizing on-site energy production for non-traction load
 - Meeting IR's Renewable Purchase Obligation (RPO) &
 - Substituting conventional supply with lower cost RE for traction load (wherever possible and to whatever extent)

It was agreed that the PACE-D 2.0 RE Program would analyze demand for a state and develop a strategy for System Friendly Round the Clock Power

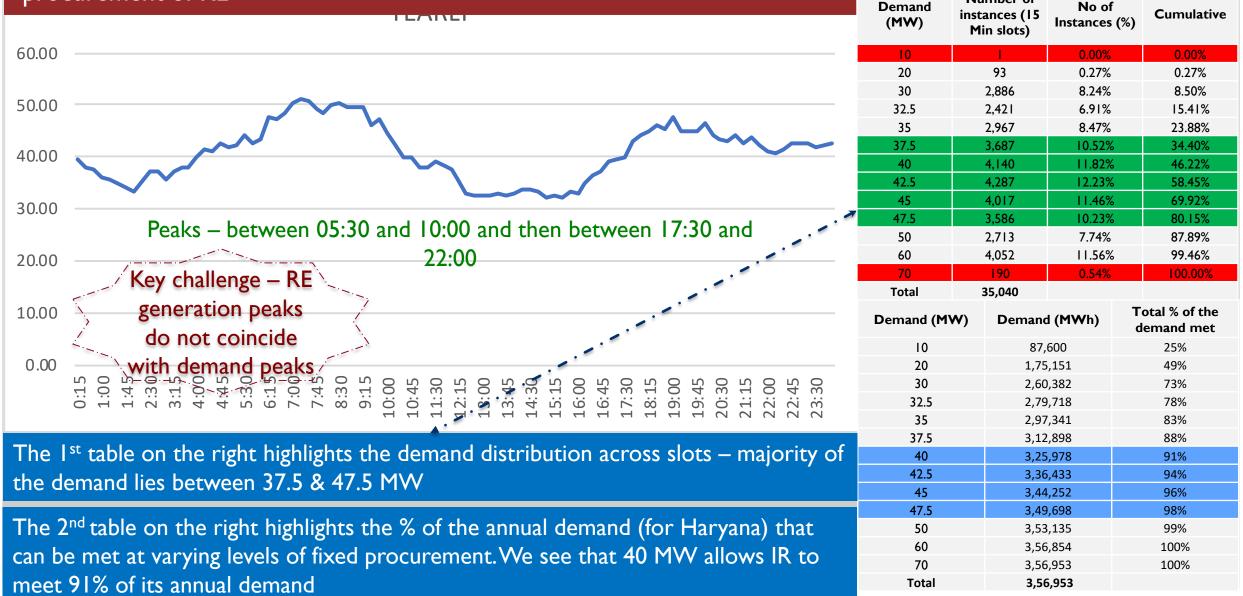
Problem Statement: IR, in order to optimize power procurement, IR wants to integrate RE into its power mix. However, RE power is infirm power, would need to be supplemented by thermal power and/ or distribution company supply – leading to increase in costs. RTC procurement can help it address this issue

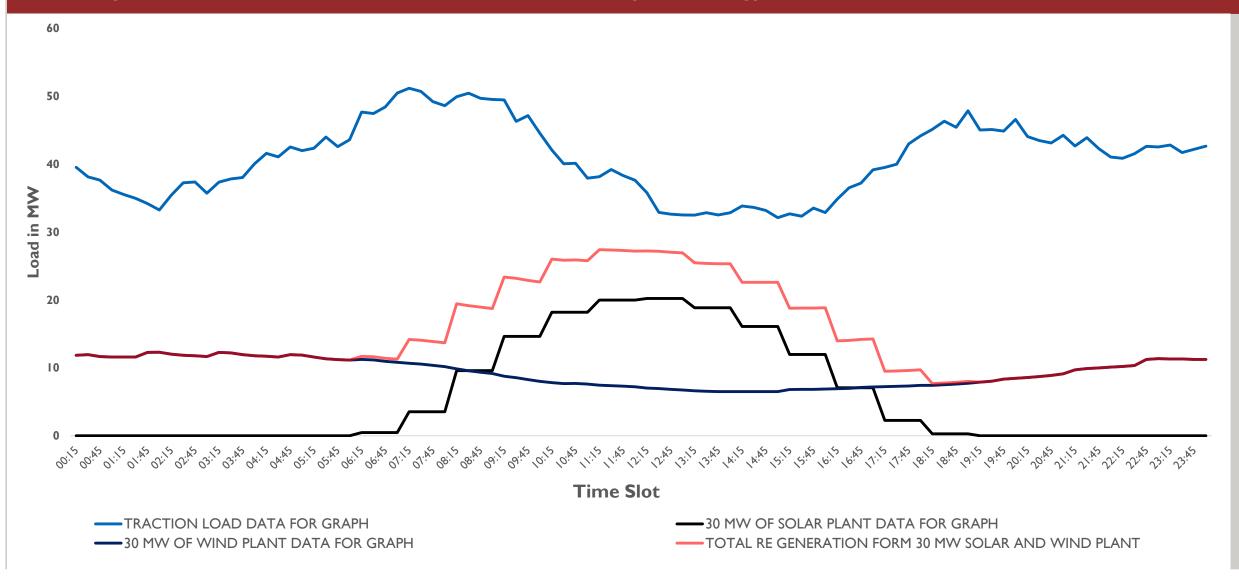

- IR, with its deemed licensee status, can procure electricity for traction load cheaper than through DISCOMs.
- IR, currently, has a number of PPAs with thermal power suppliers which reduced its cost of power supply
- However, IR, as these PPA's have a capacity charge, utilizing RE power becomes more expensive
- IR is unable to take advantage of cheaper green power due to the dynamic and independent nature of supply contracts
- This brings to the concept of round the clock power with green energy
- Green energy can be combined with battery storage and/or thermal to make it firm power and supply as per the dynamic demand



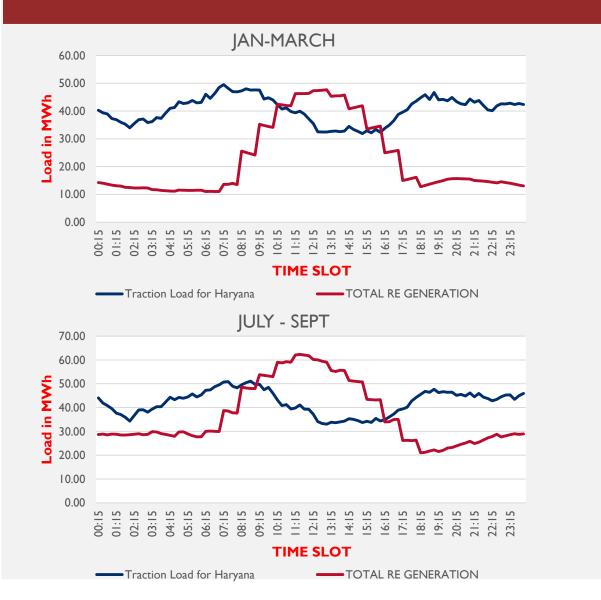
A Whitepaper developed by the PACE-D 2.0 RE Program team provided a theoretical basis on which the PACE-D 2.0 RE Team developed the strategy for System Friendly Round the Clock RE Power Procurement

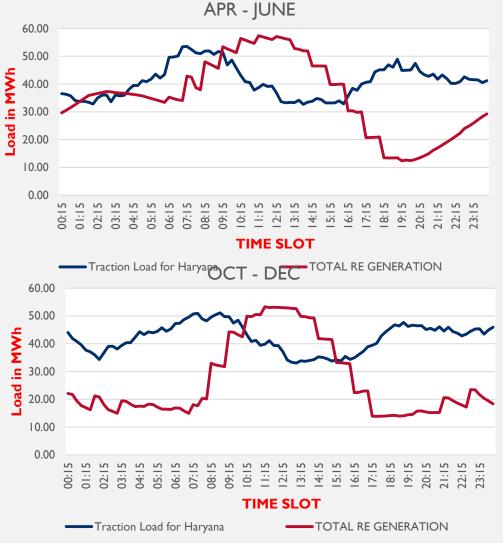
This paper discusses:


- The relevance of system-friendly RE competitive procurement in India.
- Analyses experience with RE hybrid procurement and other system system-friendly approaches implemented in India.
- Four international trends on innovative RE procurement (time-based incentives) and penalties, aggregators (virtual hybrids), competitive procurement of physical hybrid solutions, and locational signals are presented.
- Initial considerations for application in India.
- Recommendations and an outlook on future work for energy policy authorities.



Cost Benefit Analysis for System Friendly Round the Clock Power for Haryana

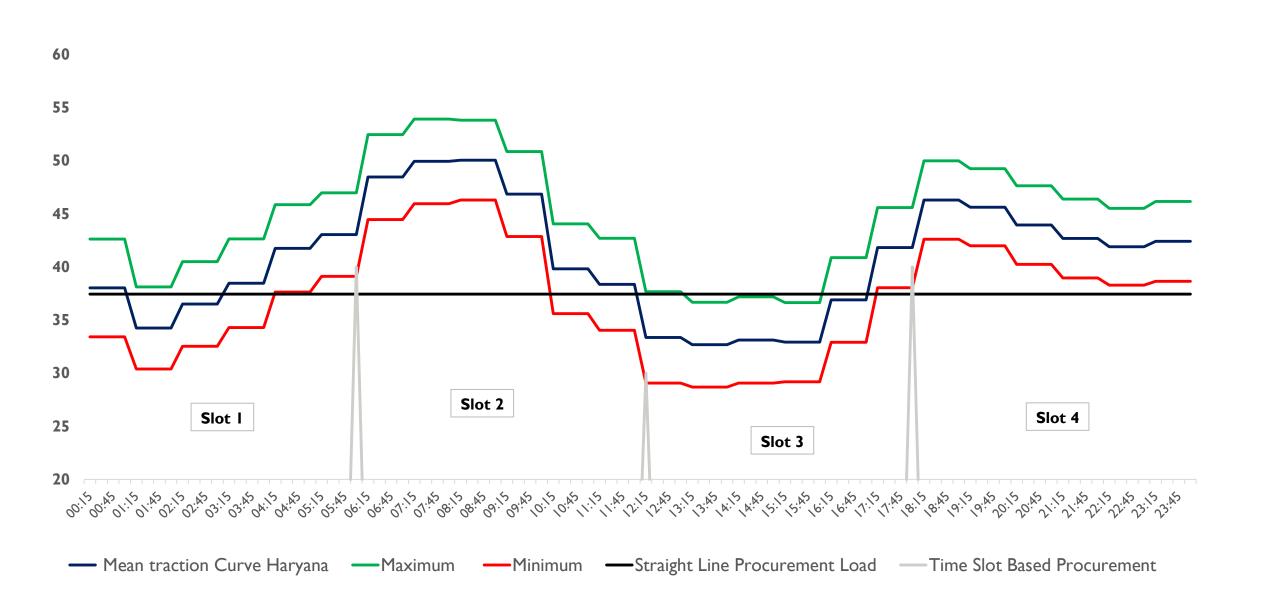

Haryana, is a small state by IR electricity demand requirements, hits its peaks between 5:30 AM – 10:00 AM in the morning and then between 5:30 PM – 10:00 PM in the evening. This creates some challenges in the procurement of RE



With decreasing cost of RE, it makes sense to procure as much RE as possible to meet the demand. However, as the demand curve and the RE supply curve are quite divergent, this creates a challenge for the utilization of RE and the availability of energy for IR

This variation in the RE generation curve and the demand curve makes matching RE supply and demand a very challenging exercise, especially as demand shifts seasonally

The initial aim of the Program was to evaluate whether a state could be converted into a completely RE (Green) Powered Zone – we tried doing this with Haryana – leading to quire outrageous results

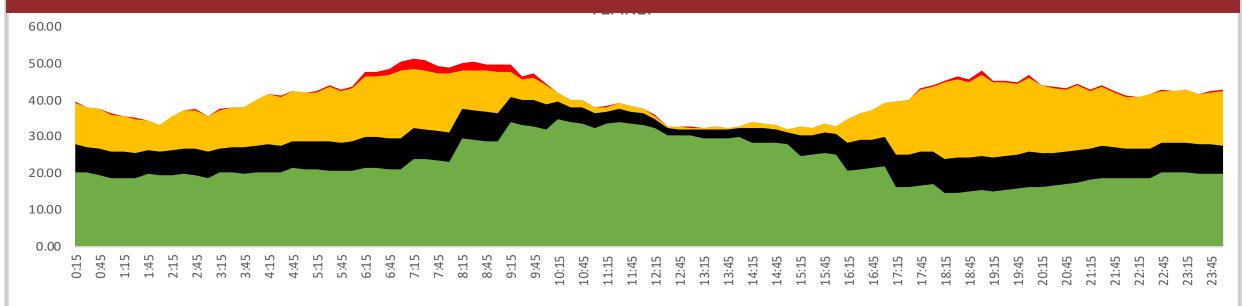

	Solar	Wind	Percentage of total power	Cost of RE Power
S. No.	(MW)	(MW)	met through RE	Procured (INR/kWh)
I	50	50	54	4.50
2	100	100	75	4.72
3	150	150	83	5.52
4	200	200	88	6.51

Maximizing RE as a % of the total energy demand leads to huge overdesign and very high cost of RE procurement

Then in order to analyse how we can meet the requirements of IR – lowest cost power with as much RE component as possible, the Program identified 3 models for procuring power – 1) Fixed demand RTC procurement; 2) Slot wise fixed demand RTC procurement; and 3) Real time demand RTC procurement

Model	Summary	Benefits	Challenges
Fixed Demand procurement	IR procures fixed load across the day	Simple procurement model for the suppliers. Expected to receive high response from suppliers	 Limits the procurement to the fixed demand IR will need to find other avenues for procuring power beyond the fixed demand
Slot wise Fixed Demand procurement	IR procures different fixed demands for different time slots of day	Support IR meet peak demand	• Limits the procurement to the fixed demand per slot
Real time demand procurement	IR procures as per the real time demand	IR sources entire power from single supplier which simplifies the procurement process for IR	 Meeting real time demand would need additional generation capacity reserves making power more expensive Difficult to monitor contracts in case of increase in traffic in future

These three models have been highlighted here with the help of the demand curve.

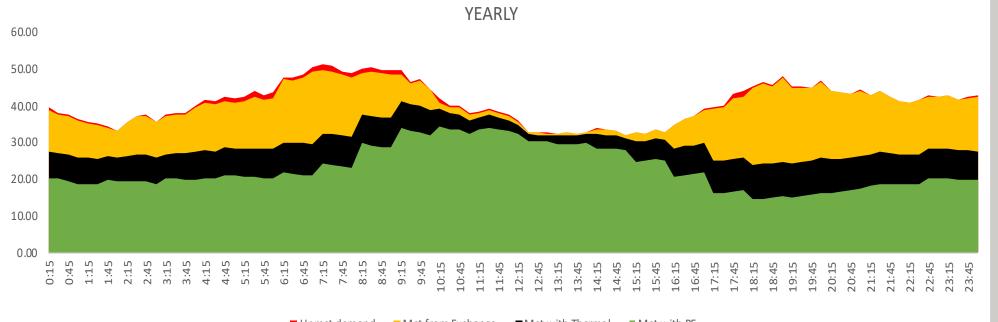

Based on discussions (with REMCL, developers and internally) we came up with the view that the fixed line method would be the most efficient form of RTC power procurement, given the conditions of the market and the demand from REMC (Assumptions)

Base Load (MW) Scenarios	I nermal (MW)	Solar (MW)	Wind (MW)	% of Energy Demand Fulfilled	% of RE share in Energy Demand Fulfilled	Unit Cost (INR per KWh)	% of Surplus RE	Savings (INR Crore)
30	10	30	40	73	56	4.24	8	21.0
35	10	30	50	83	56	4.27	10	23.2
40	10	30	60	91	57	4.3 I	12	24.2
45	10	40	60	96	58	4.34	13	24.6
50	10	40	60	99	57	4.35	12	24.6
100% demand	10	40	60	100	56	4.36	12	24.6

The results of the Simulation for System Friendly Round the Clock Power for Haryana

Scenario I: Results for the least cost analysis for 50 MW Flat Demand based procurement (Minimum 50% RE) – slightly higher cost, higher % of energy demand met, 57% of RE

■ Unmet demand ■ Met from Exchange ■ Met with Thermal ■ Met with RE


Results			Generation & C
Net cost of RE	65.9	INR Crore	Consumed Power
Average cost of RE	3.28	INR/kWh	Surplus Power fro
Total cost of thermal power	32.4	INR Crore	
Average Cost of thermal	5.41	INR/kWh	
Total cost of exchange power	55.3	INR Crore	Solar
Total energy cost	153.73	INR Crore	
Average cost of portfolio	4.35	INR/kWh	Thermal

Generation & Consumption					
Consumed Por	wer from RE	57%			
Surplus Power	from RE	12%			
Thermal consu	17%				
Procured from	26%				
Solar 40MW					
Wind 60 MW					
Thermal					

Scenario 2 & 3: Results for the least cost analysis for 35/40 MW Flat Demand based procurement (Minimum 50% RE) – slightly lower cost, higher unmet demand, lower % of RE vis a vis 50 MW

Scenario 4: 45 MW Base Demand + 7.5 MW Additional Demand for 10 hours (Minimum 50% RE) – low unmet demand; not much difference in price; 57% of power from RE

■ Unmet demand ■ Met from Exchange ■ Met with Thermal ■ Met with RE

Results		Generation & G	Consumption
Net cost of RE	65.9	INR Crore Consumed Power	r from RE 57%
Average cost of RE	3.28	INR/kWhSurplus Power fro	om RE I 12%
Total cost of thermal power	32.4	INR Crore Thermal consum	otion 17%
Average Cost of thermal	5.42	INR/kWhProcured from ex	change 26%
Total cost of exchange power	55.3	INR Crore Solar	40 MW
Total energy cost	153.7	INR Crore Wind	60MW
Average cost of portfolio	4.35	INR/kWh Thermal	10MW

- Base load (24 hours supply – 45 MW
- Additional load 7.5 MW
 - 6:00 AM to 10 AM
 - 6 PM to Midnight
- Equivalent to 50 MW flat demand in energy terms
- Average cost of supply is similar to that of 50 MW flat demand

Key results and inferences

Results

- 100% RE procurement becomes
 prohibitively expensive
- Ability of RE to meet demand diminishes significantly as RE cross the 60% mark
- The least cost procurement option for Thermal+RE is around 30 MW

Inferences

- Under fixed demand procurement, excess power will be procured by IR from the exchange or Discom
- In the fixed demand analysis, cost differential between 40 & 50 MW is marginal – we recommend a higher MW procurement
- We suggest a fixed demand procurement with minimum 50% of energy coming from RE

The Next Steps

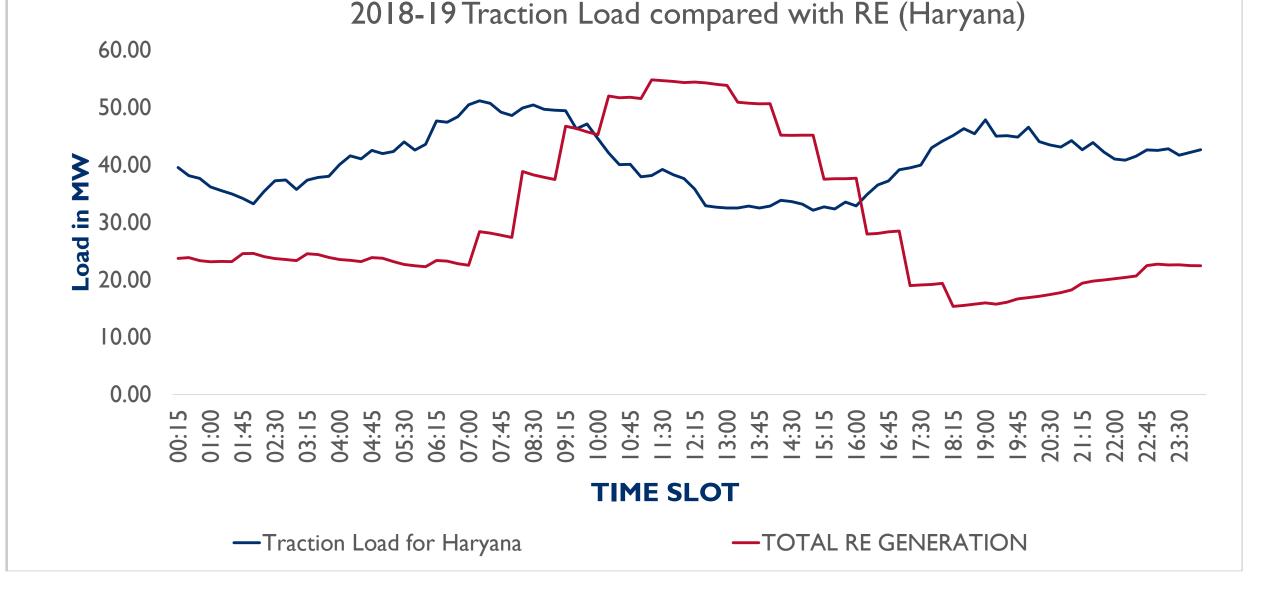
- Selection of States
 - Single state (State with high demand requirement recommended)
 - Clubbing multiple states
- Procurement Parameter
 - Least tariff option for minimum 50% (or some other %) RE
 - Highest % RE for a set tariff
 - Combination of above two
- Choose Procurement Model
 - Meet entire demand
 - Meet a certain fixed load/ base load
 - Meet base load plus additional load in few time slots

Inank You For further suggestions, please contact:

For further suggestions, please contac Anurag Mishra Email: amishra@usaid.org Mob: +91 9873523254

Key Assumptions

	JITI	PL	BRBCL		
	Angul, Odisha		Navi Nagar, Bihar		
Haryana		38 MW		I5 MW	
	Fixed Cost	₹ 1.45	Fixed Cost	₹ 2.81	
	Var. Cost	₹ 1.45	Var. Cost	₹ 1.90	
	Period	Oct. 2020	Period	25 YEARS	


Cost of solar power	2.88	INR/kWh
Cost of wind power	3	INR/kWh
Sales price of RE surplus power	I	INR/kWh
Fixed charges (PLF<85%)	2.81	INR/kWh
Fixed charges (PLF>85%)	1.124	INR/kWh
Variable charges	1.9	INR/kWh
Purchase price of power from exchange	6	INR/kWh

100% Thermal scenario		
Thermal capacity	53	MVV
Thermal consumption	3,55,404 (99.6%)	MVVh
Fixed charges	1,10,89,32,780	INR
Variable charges	67,52,67,205	INR
Total cost of thermal power	1,78,41,99,985	INR
Average Cost of thermal	5.02	INR/kWh
Procured from exchange	I,549 (0.4%)	MVVh
Cost of procurement from exchange	92,96,026	INR
Total cost	1,79,34,96,010	INR
Average Cost	5.02	INR/kWh

For Madhya Pradesh, peaks occur during 5:00 AM – 11:00 AM and 7:00 PM – 12:00 AM. Data from 2018-19 was used.

Key challenge – RE 270.00 generation peaks do not coincide 260.00 with demand peaks	Demand (MW)	No of Instances (%)	Cumulative	Total % of the demand met
^{260.00} with demand peaks	165	0.05%	0.05%	70%
250.00	170	0.06%	0.11%	72%
	175	0.14%	0.25%	74%
240.00	180	0.23%	0.47%	76%
230.00	185	0.46%	0.93%	78%
	190	0.78%	1.71%	81%
220.00	195	I.25%	2.96%	83%
Peaks – between 05:00 and 11:00 and then between 19:00 and	200	I.85%	4.81%	85%
00:00	205	2.58%	7.39%	87%
200.00	210	3.51%	10.90%	89%
0:15 1:45 1:45 2:30 2:30 2:30 2:30 2:30 2:30 2:30 2:30	215	4.51%	15.41%	90%
	220	5.96%	21.37%	92%
	225			94%
	230			95%
	235			96%
From the table, we see that 215 MW allows IR to meet 91% of its annual demand	240			97%
The the table, we see that 215 1100 anows in to meet 71/6 of its annual demand	250			99%
	310	24.85%	100.00%	100%

This can also be seen in the cumulative supply curve – here shown as a Demand Vs RE Generation Pattern (Solar 60 MW + Wind 60 MW)

